downloaded from http://studentsuvidha.in/

B.E.
Eighth Semester Examination, Dec-2005

DISTRIBUTED SYSTEM

MNote : Attempt any five questions.

2. 1. (a) Write and discuss any three advantages and disadvantages of distributed systems over indepen-
dent P.C.S.

Ans, Given that microprocessors are a cost-effective way to do business, one ¢an have his own PC and
work independently but for some things, many users need 1o share data. For eg. airline reservation clerks need
access to the master data base of Mights & existing reservations. Giving each clerk his own private copy of the
entire data based would not work, since nobedy would know which seats the other clerks had already sold.
Shared data are absolutely essential to this and many other applications, so the machine must be intercon-
nected. Interconnecting the machines leads to a distributed system.

Secondary, sharing often involves more than just data. Expensive peripherals, such as color later printers,
phototypesetters, and massive archival storage device (eg. optical jukeboxes), are also candidates.

A third reason to connect a group of isolated computers into a distributed system is to achieve enhanced
person-to-person communication, For many people, electronic mail has numerous attractions over paper mail,
telephone and FAX. It is much faster than paper mail, does not require both parties to be available at the same
time as does the telephone and unlike FAX, produces documents that can be edited, rearranged, stored in the
computer to manipulated with rext processing programs.

Disadvantages:

Although distributed systems have their strengths, they also have their weaknesses. First problem is the
software. With the current state-of-the art, we do not have much experience in designing, implementing, and
using distributed software. What kinds of operating systems, programming languages, and applications are
appropriate for these systems? How much should the users know about the distribution? How much should
the system do and how much should the users do?

A second potential problem is due to the communication network. It can lose messages, which requires
special software 1o be able to recover, and it can become overloaded. When the network saturates, il must either
be replaced or a second one must be added. In both cases, some portion of one or more buildings may have to
be rewired at great expense, or network interface boards may have to be replaced leg. by fiber optics). Once the
system comes o depend on the network, its loss or saturation can negate most of the advantages the distrib-
uted system was buill to achieve.

Finally, the easy sharing of dara, which we described as an advantage, may turn out to be a two-edged
sword. If people can conveniently access data all over the system, they may equally be able to convéniently
aceess data that they have no business looking at. In other words, security is often a problem. For data that
must be kept secret at all costs, it is often preferable 1o have a dedicated, isolated personal computer that has

no network connections to any other machines, and is kept in a locked room with a secure safe in which all the
floppy disks are stored.

http://studentsuvidha.in/forum

downloaded from http://studentsuvidha.in/

Q. 1. (b) What are the design issues for distributed systems? Discuss briefly.
Ans. The design issues are :

1. Transparency : The single most important issue is how to achieve the single-system image. A system
that realizes this goals is often said to be transparent. Transparency can be achieved at two different levels.
Easiest to do is to hide the distribution from the users. At a lower level it is possible, but harder, to make the
system look transparent to programs,

The concept of transparency can be applied to several aspects of a distribution system :

Kind Meaning
Location transparency The users cannot tell where resources are located.
Migration transparency Resources can move at will without changing their names,
Beplication transparency The users cannot tell how many copies exist,
Concurrency replication Multiple users can share resources automatically,
Parallelism replication Activitics can happen in paralle! without users knowing.

Different kinds of transparency in a distributed system.

2. Flexibility t It is important that the system be flexible. Flexibility, along with transparency, is preferred.
But the things are not as simple as they seem. There are two schools of thought concerning the structure of
distributed system. One school maintains that each machine should run a rraditional kernel that provides most
services itself. The other maintains that the kernel should provide as little as possible, with the bulk of the
operating system services available from user-level servers. The two models are known as the monolithic kemel
and micro kernel respectively.

The micro kemnel is more flexible because it does aimost nothing. It basically provides just four minimal
services :

(i} An interprocess communication mechanism,

(ii) Some memory management.

(i) A small amount of low-level process management and scheduling.
{i-v] Low-level input/output,

3. Reliability : One of the original goals of building distributed systems was to make them more reliable
than single-processor systems, The goals is that to function at all, current distributed systems count on a
number of specific servers being up. It is important to distinguish various aspects of reliability. Availability
refers to the fraction of time-that the system is usable. Availability can be enhanced by a design that does not
require the simultaneous functioning of a substantial number of critical components, Redundancy also im-
proves availability, Key pieces of hardware & software should be replicated so that if one of them fails the
others will be able 1o take up the slack.

A highly reliable system must be highly available. Another aspect of overall reliability is security. Files &
other resources must be protected from unauthorized usage. Another issue relating to reliability is fault toler-
ance. i.e. the distributed systems can be designed to mask failures, that is, to hide them from the users.

http://studentsuvidha.in/forum

downloaded from http://studentsuvidha.in/

4. Performance : Any distributed system should run faster as compared to a single processor. The
performance problem is compounded by the fact that communication, which is essential in a distributed system
in typically quite slow. Sending a message and gedting a reply over a LAN takes about | msec most of this time
is due to unavoidable protocol handing on both ends, rather than the time the bits spend on the wise. Thus to
optimize performance, one often has to minimize the number of messages. The difficulty with this strategy is
that the best way to gain performance is to have many activities running in parallel on different processors, but
doing so requires sending many messages,

One possible way out is to pay considerable attention to the gain siz¢ of all computations, In general, jobs
that involve a large number of small computations, especially ones that interact highly with one another, may
cause trouble on a distributed system with relatively slow communication. Such jobs are said to exhibit fine-
grained parallelism. Whereas jobs are said to exhibit cross-grained parallelism that involve large computation &
may be a better fit.

5, Scalability ; One principle used is to avoid centralizetl components, tables and algorithms. Having a
single mail server for 50 million users would not be a good idea. Even ifithad enough CPU & storage capacity,
the network capacity into and out of it would surely be a probleni. Furthermore, the system would not tolerate
faults well. A single power outage could bring the entire system down.

Concept Example
Centralized components, A single mail server for all users,
Centalized tables. A single one-line telephone book
Centralized Algerithms, Doing routing based on complete information,

Fig. 1 ; Porential botlenecks thot designers showld iry to avoid in very large distributed systems
Q. 2. (a) What do you mean by logical clocks? Discuss briefly?

Ans. With a single computer and a sipgle clock, it does not matter if the clock is off by a small amount.
Since all processes on the machine use the same clock, they will still be internally consistent. As soon as
multiple CPUS are introduced, each with its own clock, the situation changes. Although the frequency at which
a crystal oscillator runs is unusually fairly stable, it is impossible to guarantee that the crystals in different
computers all run at exactly the same frequency. In practice, when a system has n computers, all n crystals will
run at slightly different rates, causing the clocks gradually to get out of sync and give different values when
read out. This difference in the values is called clock skew. As a consequence of this clock skew, programs that
expect the time associated with a file, object, process or message to be correct & mdcpcn:i:nt of the machine

on which it was generated can fail.

This brings us to a question, whether it is possible to synchronize all the clocks to produce a single,
unambiguous time standard. In a classic paper, lamport showed that clock synchronization is possible &
presented an algorithm for achieving it,

Lamport pointed out that clock synchronization need not be absolute. If two processes do not interact, it
is not necessary that their clocks be synchronised because the lack of synchronisation would not be observ-
able and thus could not cause problems. Furthermore, he pointed out that what usually matters is not that all
processes agree on exactly what time it is, but rather, that they agree on the order in which events oceur. In the
make example above, what counts is whether input. C is older or newer than input . O, not their absolute certain

/

http://studentsuvidha.in/forum

downloaded from http://studentsuvidha.in/

times.

For many purpose, it is sulficient that all machines agree on the same time. It is not essential that this time
also agree with the real time as announced on radio every hours, For running make, for example, it is adequate
that'all machines agree that it is 10 :00, even if it is really 10 : 02. Thus for a certain class of algorithms it is the
internal consistency of the clocks that matters, not whether they are particularly close to the real time. For there
algarithms, it is conventional to speak of the clocks as Logical Clocks.

To synchronize logical clocks, Lamport defined a relation called happens before. The expression a — b
is read "a happens before b" and means that all processes agree that first event a oceurs, then afterward, event
b oceurs. The happens-before relation can be observed directly in two situations :

1. Ifaand b are events in the same process, and a occurs before b, then a — b 15 true.

2 Ifais the event of a message being sent by one process, and b is the event of message being received
by the another process, then a — b 15 also true. A message cannot recejved before it is sent. Or even
at the same time it is sent, since it tapes a finite amount of time (o arrive,

). 2. (b) Does using time stamping for concurrency control ensure serializability? Discuss,

Amns. An approach to concurrency control is to assign each transaction a time stamp at the moment it does
BEGIN-TRANSACTION. Using Lamport's algorithim, we can ensure that the timestamps are unique, which is
important. Every file in the system has a read timestamp and a write timestamp associated with it, telling which
committed transaction last read & wrote it respectively. If iransactions are short and widely spaced in time, if
will normally oceur that when a process tries to access a file, the file's read £ write timestamps will be lower
(older) than the current transaction’s time-stamp, This ordering means that the transactions are being pro-
cessed in the proper order, so everything is all right. When the ordering is incorrect, it means that a transaction
that started later than the current one has managed to get in there, access the file, and commit, This situation
mieans that the current transaction is too late, so it is observed. Consider an example-imagine that there are three
transactions, alpha, beta and gamma. Alpha run a long time ago, and used every file needed by beta and gamma,
Alpha ran a long time ago, and used every file needed by beta and gamma, so all their files have read & write
timestamps set to alpha's timestamp. Beta and gamma start concurrently, with beta having a lower timestamp
than gamia. Let us first consider beta writing a file, Call its timestamp, T, and the read & writing a file, Call its

timestamp, T, and the read & write Timestamps of the file to be written Tgp and Typ , respectively. Unless
gamma has snuck in already and commiitted, both Ty & Ty will be alpha's timestamp, and thus less than T.

In figure (a) & (b) we see that T is larger than both Ty & Typ (gamma has not already committed), so the
write is accepted and done tentatively, It will become permanent when beta commits. Beta's timestamp is now
recorded in the file as a tentative rule,

In fig (¢} & (d) beta is out of luck. Gamma has either read (c) or written {d) the file and committed. Beta'
transaction is aborted. However, it can apply for a new timestamp and start all over again.

Now look at reads. In fig (e}, there is no conflict, so the read can happen immediately. In fig (f), some

interloper has gotten in there and is trying to write the file. The interloper's timestamps is lower than beta’s, so
beta simply waits until the interloper commits, at which time it can read the new file and continue.

In fig (g), gamma has changed the file and already committed. Again beta must abort, In fig (h), gamma is
in the process of changing the file, although it has not committed yet. Still, beta is too late and must abort.

http://studentsuvidha.in/forum

downloaded from http://studentsuvidha.in/

Timestamping has different properties than locking. When a transaction encounters a larger timestamp, it
aborts, whereas under the same circumstances, with locking it would either late or be able to proceed immedi-
ately, On the other hand, it is deadlock free, which is a big plus. All in all, transactions offer many advantages
and thus are a promising technique for building reliable distributed systems. Their chief problem is their great
implementation complexity, which yields low performance. There problems are being worked on, and perhaps in
due course they will be solved,

(@ Teo Twg T e) Twr T
fo) () |(B) |f'1} I{ﬁ} oK
® WrR Tpp T (f T]VR T T
() !m }{B} it
e T T (2 T T
(B)_]v)
(d) b T Abort (h) T Thes Abort

Concurrency Control Using Timestamps
0. 3. What are deadlocks? Discuss Chandy-Misra-Hass distributed deadlock detection algorithm.

Ans. Deadlocks in distributed system are similar to deadlocks in single processor system. They are harder
to avoid, prevent or even detect and harder to cure when tracked down because all the relevant information is
scartered over many machines. Two kinds of distributed deadlocks :

1. Communication deadlocks.
2. Resource deadlocks.

A communication deadlock occurs for e.g. when process A is trying to send a message to process B,
which in turn is trying to send one to process C, which is trying to send one to A.

Various strategies are used to handle deadlocks. Four of the best-known ones are listed below :
I. The ostrich algorithm (ignore the problem),
2 Detection (let deadlocks occur, detect them, and try to recover).
3, Prevention (Statically make deadlocks structurally impossible).
4, Avoidance (avoid deadlocks by allocating resources carefully).
/

http://studentsuvidha.in/forum

downloaded from http://studentsuvidha.in/

Distributed Deadlock Detection : Finding general methods for preventing or avoiding distributed dead-
locks appears to be quite difficult, so many researchers have tried to deal with the simpler problem of just
detecting deadlocks, rather than trying to inhibit their occurrence.

Chandy-Misra-Hass algorithm : In this algorithm, processes are allowed to request multiple resource
{eg locks) at once, instead of one at a time. By allowing multiple requests simultaneously, the growing phase
of a transaction can be speeded up considerably. The consequence of this change to the model is that a
process may now wait on two or more resource simultaneously. Fig shows a modified resource graph, where
only the processes are shown, Each arc passes through a resource, as usual, but for simplicity the resources
have been omitted. Process 3 on machine | is waiting for two resources, one held by process 4 and one held

by process 3.

Some of the processes are waiting for local resources, such as process |, but others, such are process 2,
are waiting for resources that are located on a different machine.

Machine 0 (0.8.0)

r (0.4.6) :. :E'_'
. {0,2,3)
0 2 3
3
(0,57 @

Machine 1 Machine 2

Fig : The chandy-Misra-Haas distributed deadlock detection algorithm

It is precisely these cross-machine arcs that make looking for cycle difficult. The Chandy-Misra-Haas
algorithm is invoked when a process has 10 wait for some resources. For e.g, process a blocking on process 1.
At that point a special probe message is generated and sent to the process (or processes) holding the needed
resources. The message consist of three numbers; the process that just blocked, the process sending the
message & the process to whom it is being sent. The initial message from 0 to | contains the triple (0, 0,).

When the message arrives, the recipient checks to see if it itself by its own process number & the third
one by the number of the process it is waiting for. The message is then sent to the process on which it is
blocked, If it is blocked on multiple processes, all of them are sent (different) messages. This algorithm is
followed whether the resource is local or remote. In fig we see the remote messages labelled (0, 2, 3), (0, 4, 6), (0,
5, Tyand (0, B, 0). If a message goes all the way around & comes back to the original sender i.e. the process listed
inthe first field, a cycle exists and the sysfem is dead-locked. There are various ways in which the deadlock can
be broken. One way is to have the process that initiated the probe commit suicide. However this method has
problems if several processes invoke the algorithm simultaneously, In fig. for e.g. imagine that both 0 and 6
block at the same moment & both initiate probes, Each would eventually discover the deadlock & each would
Kill itself. This is overkill. Getting vid of one of them is enough.

Q. 4. (a) Write a few design issucs for threads-packages.

Ans. A sct of primitives (e.g. library calls) available to the user relating to threads is called a threads
package. The first issue concerned with the architecture & functionality of thread packages is thread manage-
ment, Two alternatives are possible-static threads & dynamic threads. In case of static design, the choice of
how many threads there will be is made when the program is written or when it is compiled. Each thread is
allocated a fixed stack. This approach is simple, but inflexible. '

http://studentsuvidha.in/forum

downloaded from http://studentsuvidha.in/

A more general approach is to allow threads (o be created & destroyed on-the-fly during execution. The
thread creation call usually procedure) and a stack size, and may specify other parameter as well, for eg, a
scheduling priority. This all usually returns a thread identifier to be used in subsequent calls involving the
thread. In this model, a process starts out with one (implicit) thread, but can create one or more threads as
needed & these can exit when finished. Threads can be terminated in one of two ways. A thread can exit
voluntarily when it finishes its job, or it can be killed from outside.

Since threads share a common memaory, they can, use it for holding data that are shared among multiple
threads such as buffers in a producer-consumer system. Access to shared data is usually programmed using
critical regions, to prevent multiple threads, from frying to access the same data at the same time. Critical
regions are most easily implemented vsing semaphores, monitors ete. One technique that is commonly used in
threads packages is the mutex whuch is a kind of watered-down semaphore. Two operations are possible on
mutex—Lock and Unlock, the | ock suceceeds & the mutex becomes locked in a single atomic action,

Another synchronization feature that is sometimes available in threads packages is the condition vari-
able, which is similar to the condition variable used for synchronization in monitors. Each condition variable is
normally associated withra mutes at the time it s created. The difference between mutexes and condition
variables is that mutexes are used for shor-term locking, mostly for guarding the entry to critical regions.
Condition variables are used for long-term waiting until a resource becomes available. A thread locks a mutex
to gain entry to a critical region. Once inside the critical region, it examines system tables and discovers that
some resource it necds is busy, i simply locks a second mutex (associated with the resource) the outer mutex
will remain locked and the thread holding the resource will not be able to enter the critical region to free it.
Deadlock occurs.

One solution is to use condition variables to acquire the resource as shown below ;
Lock miutex,
check dane structures;
while [rusource busy)
witit (condition variable);
miark resource as busy;
unlock mutex: fig. 1. (a)

Here, waiting on the condition variable is defined to perform the wait & unlock the mutex atomically. Later,
when the thread holding the resources free it as shown below, it calls wakeup, which is defined to wakeup either
exactly one thread or all the threads waiting oo the specified condition variable.

lock mutes:
mark resource as free;
unlock mures:
wakeup (condition variable); Fig. 1 (b)

The use of while loop instead of Ifin lig | {a) guards against the case that the thread is awakened but that
someone else seizes the resource befure the thread runs.

http://studentsuvidha.in/forum

downloaded from http://studentsuvidha.in/

Q. 4. (b) A real time system has periodic processes with following computational requirements and
periods :

P'1: 20 msec every 40 msee,

P2 : 60 msec every 500 msec.

P 3:5 msec every 20 msec.

P4 : 15 msec every 100 msec,

Is this system schedulable on unc C.1LU.7 Justify Your answer.

Ans.

Pl : 20 msec every 40 m scc

P3: 5 msec every 20 msec

Now after every 40 m sec process P runs for 20 m sec. On the other hand after every 20 m sec, process P3
runs for 5 m sec.

Now after 40 m sec P3 will run Tor 10 m sec.

But at that time processor is busy with process P1. It is not possible to run P3, Thus we need more than
one processor.

o 5 10 15 20 25 30 35 40 45 50 ss

P P g g IO
)
Py] o]
Py

Consider that PI & P3 nevd processor al same time,
Q. 5. {a) Define file service interface, Discuss upload/downinad model briefly.

Ans, Forany file service, v heilier fora single processor or for a distributed system, the most fundamental
issue is: what is a file? The meanine & structure of the information in the files is entirely up to the application
programs. A file can have attributes which are pieces of information about the file but which are not part of the
file itself. Typical attributes are ihe owner, sixe, creation date, and access permissions. The five service usvally
provides primitives to read and write some ol the attributes. For e.g., it may be possible to change the access
permissions but not the size (o than by appending data to the file).

Another important aspect ol the [1le nodel is whether files can be modified after they have been created.
Wormally, they can be, but in soie distributed systems, the only file operations are CREATE and READ. Once
a file has been created. it cannet be chaneed. Such a file s said to be immutable. Having files be immutable
makes it much easier to support [ile conching und replication because it eliminates all the problems associated
with having to update all copies of o tile wienever it changes,

http://studentsuvidha.in/forum

downloaded from http://studentsuvidha.in/

Protection in distributed systems uses essentially the same technique as in single-processor systems |
capabilities and access control lists. With capabilities, each user has a kind ofticket, called a capability, for each
ohject to which it has access. The capability specifies which kinds of accesses are permitted (eg, reading is
allowed but writing is not),

All access control list schemes associates associate with each file a list of users who may access the file
and how. The UNIX scheme, with bits for controlling reading, writing and executing each file separately for the
owner, the owner's group, and everyone else is a simplified access control list.

1. File moved to client

[TT11 e—0ld file
[T1 1] fe—Newfie

3. When client

2. Accesses \

are dgnu is done, file
on client is returned to
server)

The upload / download model

File services can be split into tow tvpes, depending on whether they support an upload/download model
or a remote access model. In the upload/download model, shown in figure 2 (a], the file service provides only
two major operations : read file and write file. The former operation transfer an entire file from one of the file
servers 1o the requesting client. The latter operation transfers an entire file the other way, from client to server.
Thus the conceptual model is moving whose files in either direction. The files can be stored-in memory or on a
local disk, as needed.

The advantage of the upload/download model is its conceptual simplicity. Application programs fetch
the files they need, then use them locally. Any modified files or newly created files are written back when the
program finishes. No complicated file service interface has to be mastered to use this model. Furthermore,
whole file transfer is highly efficient. However, enough storage must be available on the client to store all the
files required. Furthermore, if only a fraction of a file is needed, moving the entire file is wasteful.

Q. 5. (b) Why replication is needed? What are the reasons for offering such a service?

Ans, Distributed file systems often provide file replication as a service to their clients. In other words,
multiple copies of selected files are maintained, with each copy on a separate file server. The reasons for
offering such a service vary, but among the major reasons are

|, Toincrease reliability by having independent backups of each file. [fone server goes down, or is even
lost permanently, no data are lost. For many applications, this property is extremely desirable.

2 Toallow file access to occur even if one file server is down, The motto is : The show must go on, A
server crash should not bring the entire system down until the server can be rebooted.

3. To split the workload over multiple servers. As the system grows in size, having all the files on one

/

http://studentsuvidha.in/forum

downloaded from http://studentsuvidha.in/

server can become a performance bottleneck. By having files replicated on two or more servers, the
least heavily loaded one can be used,

The first two relate to improving reliability and availability; the third concerns performance. All are
impornant.

A key issue relating to replication is transparency (as usual). To what extend are the users aware that
some files are replicated? Do they play any role in the replication process, or it is handled entirely automicaily.
At one extreme, the users are fully aware of the replication process and can even control it. At the other, the
system does everything behind their backs. In the larter case, we say that the system is replication transparent,

Fig. (3} shows three ways replication can be done. The first way, shown in fig 3 (a), is for the programmer
1o control the entire process. When a process makes a file, it does so on one specific server. Then it can make
additional copies on other servers, if desired. Ifthe directory server permits multiple copies of a file, the network
addresses of all copies can then be associated with the file name as shown at the bottom of fig 3 (a), so that
when the name is looked up, all copics will be found. When the file is subsequently opened, the copies can be
tried sequentially in some order, until an available one is found.

To make the concept of explicit replication more familiar, consider how it can be done in a system based on
remote mounting in UNIX,

In Fig 3 (b), there is an allernative approach, lazy replication. Only one copy of each file is created, on
some server. Later, the server itself makes replicas on other servers automatically, without the programmer's
knowledge. The system must be smart enough to be able to retrieve any of these copies if need be. When
making copies in the background like this, it is important fo pay attention to the possibility that the file might
change before the copies can be made,

g

P
Client X Later
Now -

i
¥ Later

(@@@

Server

File g 1216) 319

Propc | 121 | 243 | 341

Symbolic Multiple
name binary
addresses

(for 51.52,53)

fa) (b) (c)

http://studentsuvidha.in/forum

downloaded from http://studentsuvidha.in/

Fig 3 a) Explicit fife replication (b) Lazy file replication. (c) File replication using a group.

The last method is to use group communication, as shown in fig 3 (). In this, all WRITE system calls are
simultaneously transmitted to all the servers, so extra copies are made at the same time the original is made,
There are two principal differences between iazy replication and using a group, First with lazy replication, one
server is addressed rather than a group. Second, lazy replication happens in the background, when are server
has some free time, whereas when group communication is used, all copies are made at the same time,

Q. 6. What is the importance of consistency in DSM? Discuss :
(a) Strict consistency.
(b) Casual consistency.

Ans. In DSM systems, they have one or more copies of each read-only page and one copy of each
writable page. In the simplest implementation, when a writable page is referenced by a remote machine, a trap
occurs and the page is fetched. However, if some writable pages are heavily shared, having only a single copy
of each one can be a serious performance bottleneck.

Allowing multiple copies eases the performance problem, since it is then sufficient to update any copy,
but doing so introduces a new problem : how to keep all the copies consistent. Maintaining perfect consistency
is especially painful when the various copies are on different machines that can only communicate by sending
messages over a slow (compared {o memory speeds) network. In some DSM systems, the solution is to accept
less than perfect consistency as the price for better performance, Precisely what consistency means & how it
can be relaxed without making programming unbearable is 2 major issue among DSM researchers.

(a) Strict Consistency @
The most stringent consistency model is called strict consistency. It is defined by the following condition
Any read to a memory location X returns the value stored by the most recent write operation to X.

This definition is natural and obvious, although it implicitly assumes the existence of absolute global time
50 that the determination of most recent is unambiguous. Uniprocessors have traditionally observed strict
consistency and uniprocessor programmers have come to expect such behaviour as a matter of course. A
system on which the program.

a=1;a=2;print (a);
Printed 1 or any value other than 2 would quickly lead to a lot of very agitated programmers,
In a DSM system, the matter is more complicated. Suppose x is a variable stored only on machine B.
Imagine that a process on machine A reads x at time T}, which means that a message is then sent to B to get x.

Slightly later at T>a process on B does a write to x. If strict consistency holds, the read should always return

the old value regardless of where the machines are and how close T is to T. However, if T, =T, is say, |

nanosecond and the machines are 3 meters aparts, in order to propagate the read request from A to B to get
there before the write the signal would have to travel at 10 times the speed of light. To study consistency in
detail, we can give examples. To make these examples precise, we need a special notation. In this notation,

several processes, Py, P;and so on can be shown at different heights in the figure. The operations done by

each process are shown horizontally, with time increasing to the right. Straight lines separate the processes.
The symbols

http://studentsuvidha.in/forum

downloaded from http://studentsuvidha.in/

W(x) aand R{y)b
Mean that a write to x with the value a and a read from of returning b have been done, respectively. The
initial value of all variahles in these diagrams is assumed to be 0. As an example, in fig 4 (a) Py does a write to

location x, storing the value |. Latter, Py, reads x and sees the 1. This behaviour is correct for a strictly
consistent menory,

In contrast in fig 4 (b), P, does a read after the write (possibly only a nanosecond after it, but still after

PEWiR) LTIV
P2:R{x)t P2:R(x)OR(x)]
Pl 'l-J'u"i_x}I P1: W(x)l
P2: R{x)1 P2 R{x)0 Rix)
fu) (h)

Fig. 4. Behoviowr of two processes. The horizontal axis is time.
fa) Strictly consistent memory: (B) Memory that is not strictly consisten.
i+ 1, and gets 0. A subsequent read gives 1. Such behaviour is incorrect for a strictly memory.
When memory is strictly consistent, all writes are instantaneously visible to all processes and an absolute
global time order is maintained. If a memory location is changed, all subsequent reads from that location see the
new value, no matter how soon after the change the reads are done and no matter which processes are doing

the reading and where they are located. Similarly, if a read is done, it gets the then-current value, no matter how
quickly the next write is done.

(b} Casual mnsmmcy Th': ::asua! consistency model represents a weakening of sequential consis-
tency in thaty N

To see what casvality is all about, consider an example of a memory. Suppose that process P, writes a variable
% Then Pyreads ¢ and writes v. Here the reading of x and the writing of y are potentially causally related

because the computation of y may have depended on the value of x read by P5 (i.e. the value written by Py.On

the other hand, if two processes spontaneously and simultaneously write two variables, these are not casually
related. When there is a read followed later by a write, the two events are potentially casually related, Similarly,
aread is casually related to the write that provided the data the read got. Operations that are not casually related
are Si]ll:l o bL‘ concurrent.

For a memory to be considered causally consistent, it is necessary that the memory obey the following
condition :

Writes that are potentially casually related must be seen by all processes in the same order. Concurrent
wriles may be seen in a different order on different machines. As an example of causal consistency, consider Fig
5. Here we have an event sequence that is allowed with casually consistent memory, but which is forbidden
with a sequentially consistent memory or a strictly consistent memory. The thing to note is that the writes W (x)

http://studentsuvidha.in/forum

downloaded from http://studentsuvidha.in/

2 and W (x} 2 are concurrent, so it is not rtqu!TEd that a.ll pru-ue&ses see th:m in t'ne same order. If the software

offered by causal memory.

P W) W(x)3
P, : R(x)I W(x)2

P : R(x)! R(x)3 R(x)2
Py : R(x)l R(x)2 R(x)3

Fig (5} - This sequence is allowed with causally consistent memaory, but not with sequentially consistent
memory or strictly consistent memory

MNow consider a second example. In Fig. 6 (a) we have W(x} 2 potentially depending on W (x) 1 because
the 2 may be a result of a computation involving the value read by R(x)1. The two writes are causally related,
so all processes must see them in the same order. Therefore fig 6 (a) is incorrect. On the other hand, in fig 6 (b)
the read has been removed, so W(x)1 and W(x)2 are now concurrent writes, Causal memory does not require
concurrent writes to be globally ordered, so fig 6 (b) is correct.

Implementing causal consistency requires keeping track of which processes have seen which writes. It
effectively means that a dependency graph of which operation is dependent on which other operations must be
constructed and maintained. Doing so involves some overhead.

B Wix) P W)

Py : OR(x)EW(x)2 P W(x)!

Py R(x)2R(x)1 Py : R(x)2R(x)1

Py - R{x)IR(x)2 Py : R(x)IR(x)2
(@) (b)

Fig 6. (a) A violation of causal memary. (b)) Correct sequence of events in causal memory

Q.7.(a) MACH supports the concept of a processor set. On what class of machines does this coneept
make most sense? What is it used for?

Ans. Mach scheduling has been heavily influenced by its goal of running on multiprocessors. Since a
single processor system is effectively a special case of a multiprocessor (with only one CPU), focus is on
scheduling in multiprocessor system. The CPUS in a multiprocessor can be assigned to processor sets by
software. Each CPU belongs to exactly one processor set. Threads can also be assigned to processor sets by
software. Thus each processor set has a collection of CPUS at its disposal & a collection of threads that need
computing power. The job of the scheduling algorithm is to assign threads to CPUS is a fair and efficient way.
For purpose of scheduling, each processor set is a closed world, with its own resources and its own customers,

http://studentsuvidha.in/forum

downloaded from http://studentsuvidha.in/

independent of all the other processor sets,

This mechanism gives processes a large amount of control over their threads. A process can assign an
important threads to a proeessor set with one CPU and no other threads, thus ensuring that the thread runs all
the time. 1t can also dynamically reassign threads to processor sets as the work proceeds, keeping the load
halanced. While the average compiler is not likely to use this facility, a database management system or a real-
time system might well use it

Thread scheduling in mach is hased on priorities. Priorities are integers from O to some maximum (usually
31 or 127} with O being the highest priority and 31 or 127 being the lowest priority. This priority reversal comes
from UNIX. Each thread has three priorities assigned to it. The first priority is a base priority, which the thread
can set jself, within certam limits. The second priority is the lowest numerical value that the thread may sef its
base priority to: Since using a value gives worse service, a thread will normally. Setits value to the lowest value
itis permitted. unless it is trying intentionally to defer to other threads. The third priority is the current priority,
wsed for scheduling purposes. 1t is computed by the kernel by adding 1o the base priority a function based on
the thread's recent CPLU usage.

Wlach threads are visible to the kernel, atleast when the model of fig (b) is used, Each thread competes,
2. 7. (b} Discuss how memory is managed in MACH.

Ans. Mach has a powerful, elaborate & highly flexible memory management system based on paging,
including features found in few other operating systems. In particular it separates the machine-dependent parts
in an extremely clear and unusual way, This separation makes the memory management for more portable than
in other systems. In addition, the memory management systein interacts closely with the communication
system, The aspect of Mach’s memory management that sets itapart from all others is that the code is split info
three parts, The fiest part i the Pmap module, which runs in the kernel and is concerned with managing the
MMLUL It sers up the MMU register & hardware page tables, and catches all page faults, This code depends on
the MMU architecture and must be rewritten for each new MMU, Mach has to suppart. The second part, the
machine-in dependent kemel code, is concerned with processing page o faults, managing address maps &
replacing pages.

The third part of the memory management code runs as a user process called a memory manager or
sometimes an external pages,

The third part of the memory management code runs as a user process called a memory manager or
sometimes an external pager, It handles the logical part of the memory management system, primarily manage-
ment of the backing store (disk). The kernel and the memory manager communicate through a well-defined
protocol, making it possible for users to write their own memory managers. This division of labor gives users
the ability to implement special-purpose paging systems in order to write systems with special requirements. It
also has the potential For making the kernel smaller & simpler by moving a large section of the code out mto user
space. On the other hand, it has the potential for making a it more complicated, since the kernel must prorect
itself from buggy or malicious memory managers, and with two active entitics involved in handling memiory,
there 15 now the danger of race conditions for CPU cycles with all other threads, without regard to which
threads is in which process. When making scheduling decisions, the kernel does not take inlo account which
thread belongs 1o which process, '

http://studentsuvidha.in/forum

downloaded from http://studentsuvidha.in/

Process
| e
— |

1D e
ili

Fig. Each thread has its own kemiel thread
Associated with each processor set is an array of run queues as shown in fig. (7). The array has 32
queues, corresponding to threads currently at priorities 0 through 31. When a thread at priority n becomes
runnable, it is put at the end of gquese x. A thread that is not runnable is not present on any run queue.

Cilobal run guewe for Cilobal rum gqueue for
Priovily. Processor sel | o Processor set 2
i ne. @ —t)
Thread on
queue 2 E—

=

Thread on '—>O

quewe 17 ¥
L) 31 3l
vn s lree . Busy
Count ;6 Counm = 7
Hint : 2 Hint -4

Fig. {7) : The global run quenes for a gystem with twe processor sels.

Each run queue has three variables attached to it. The first is a mutex that is used to lock the data
structure. It is used to make sure that only one CPU at a time is manipulating the queves. The second variable
is the count of the number of threads on all the queues combined. If this count becomes 0, there is no work
to do. The third variable is a hint as to where to find the highest-priority thread. This hint allows the search
for highest priority thread to avoid the empty queues at the top. Each CPU has its own local run queue. Each
local run queue holds those threads that are permanently bound to that CPU. These threads can run on only
one CPU, ’

Q. 8. Write short notes on :

(i) Remote Procedure calls in DCE,

{ii) Condition variable in DCE,

Ans. (i) Remote Procedure ealls in DEE :

DCE is based on the client/server model. Clients request services by making remote procedure calls to
distant servers. The goals of the DCE RPC system are retatively traditional. First and for most, the RPC system
makes it possible for o client to access a remote service by simply calling a local procedure. This interface makes
it possible for client (i.e. application) programs to be written in a simple way, familiar to most programmers. It
also makes it easy to have large volumes of existing code run in a distributed environment with few, if any,
changes.

/

http://studentsuvidha.in/forum

downloaded from http://studentsuvidha.in/

It is upta the RPC svstem to hide all the details from the clients, and, to some extent, from the servers as
well, To start with, the RPC system can automatically locate the correct server and bind to it, without the client
having to be aware that this is occurring, [t can also handle the message transport in both directions, fragment-
ing & reassembling them as needed. Finally, the RPC system can automatically handle data type conversions
between the clicnt & the server, even ifthey run on different architectures and have a different byte ardering,

- Asa consequence of the RPC system's ability to hide the details, clients and servers are highly indepen-
dent of one another. A client and server can run on different hardware platforms & use different operating
systems. A varicty of network protocols and data representations are also supported, afl without any interven-
tion from the client or server,

Binding 2 client to a server:)

liefore a client can call a server, it has to locate the server and bind to it. The main problem in binding is
how the client locates the correct server. Broadcasting a message containing the unique identifier to every
process in every cell and asking all servers for it 10 please raise their hands might work, but this approach is so
slow and wasteful that it is not practical. Besides, not all networks support broadcasting, Instead, server
location 15 done in two sleps |

I. Locate the server's machine.

2. Locate the correct process on that machine,

Different mechanism are used for each of these steps. The need to locate the server's machine is obvious,
but the problem with locating the server once the maching is Known is more subtle, Basically what it comes
down to is that for a client to communicate reliable & securely with a server, a network connection is generally
required. Such a connection needs an endpoint, a numerical address on the server's machine to which network
connections can be attached and messages sent. Having the server choose a permanent numerical address is
risky, since another server on the same machine might accidentally choose other same one. For this reason,
endpoeints can be dynamically assigned, and a database of (server, endpoint) entries is maintained on each
server maching by a process called the RPC daemon. The steps involved in binding are shown in fig.

+ Cell directory server

V4

o3

3. Look up server 2. Repister service

L. Iitgisler end point

5. Da RPC

4. Ask for end points

cndéﬂint

Table

Fig. Client-to-gerver binding in DCE

http://studentsuvidha.in/forum

downloaded from http://studentsuvidha.in/

Betore it becomes available for incoming requests, the server must ask the operating system for an

endpoint. If then registers this end point with the RRC daemon. The RPC daemon records this information
(including which protocols the server speaks) in the endpoint table for future use. The server also registers
with some cell directory server, passing it the number of its host,

In the simplest case, at the time of the first RPC, the client stub asks the cell directory server to find it a
host running on instance of the server, The client then goes to the RPC daemon, which has a well-known
endpoint, and asks it to look up the endpoint (e.g. TCP port) in its endpoint table. Armed with this information,
the RPC can now take place. On subsequent RPCs this lookup is not needed-DCE also gives clients the ability
to do more sophisticated searches for a suitable server when that is needed. Authenticated RPC is also an
option.

Performing an RPC : The actual RPC is carried out transparently and in the usual way. The client stub
marshals the parameters a passes the resulting buffer to the runtime library for transmission using the protocol
chosen at binding time. For when a message arrives at the server side, it is routed 1o the correct server based on
the endpoint contained in the incomning message. The runtime library passes the message to the server stub,
which unmarshals the parameters & calls the server. The reply goes back by the reverse route.

DCE provides several semantic options. The default is most-once operation in which case no call is ever
carried out more than once, even in the face of system crashes. In practice, what this means in that if a server
crashes during on RPC & then recovers quickly, the client does not repeat the operation for fear that it might
already have been carried out once.

{ii) Condition x'uriui:llu in DCE :

DCE provides two ways for threads 1o synchronize |
1. Mutexes

2. Condinen Variables,

Condition variables provide n synchronization mechanism which are used in conjunction with mutexes.
Typically, when a thread needs sonie resource, it uses a mutex to gain exclusive access to a data structure that
keeps track of the status of the resource. [fthe resource is not available, the thread waits on a condition variable
which automatically suspends the thread & releases the mutex. Later, when another thread signals the condi-
tion variable, the waiting thread is restarted. Mutexes are used when it is.essential to prevent multiple threads
from accessing the same resource at the time, For ez, when moving items around on a linked list, partway
through the move, the list will be inan inconsistent state, To prevent disaster, when one thread is manipulating
the list. all other threads must be kept away, By requiring a thread to first successfully lock the mutex associated
with the list belure touching the list {and unlock it afterward), correct operation can be ensured.

http://studentsuvidha.in/forum

