Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

B.E.
Sixth Semester Examination, Dec-2008
SysemsProgramming & Sysem Adminidration (IT-303-E)

Note : Attempi any five questions.

. 1. What is system programming? Discuss varivus components of system programming How
{hese components are belpful? List out various advanlages and disadvantages of each component in
respeclicontexi to programming environment. 20

Ams. System programming refers to the mechanism of developing programs 2nd making coordination
between these programs in order to make the system functional.

Following are the components of system programming :

(i) Assemblers : Programmers found it difTicult to write or read programs in machinc language, In their
quest for a more convenient language they began to use a maemonic (symbol) for each machine instruction,
which they would subsequently translate into machine language. Suchu mnernonic machine language 15 now
called an assembly language. Programs known as assemblers were written to automate the translation of
assembly language mio machine language. The input to an assembler program s called the source progeam,
the output is a machine language translation object program,

Source Object
Program I—— Assembler Program

{ii) Loaders : A loader is a program thal praces programs into memory and prepares thern for
execution. In simple loading scheme, the assembler outputs the machine language wanslation of a program on
a secondary storage device and a loader is placed in core.

It would be more effictent if subroutines coutd be translated into an object from that the loader could
“relocate’” directly behind the user's program The task of adjusting programs so they may be placed in
arbitrary core locations is called relocation. Belocating oxders perform four functions :

{i} Allocale space in memory for the proprams taboo atien)

{11} Resolve symbolic reference berween ¢ baest o Frking),

{iin) Adjust all address-dependent locat-ris, Jich o Lo tas constants, to correspond to the atlocated
space (relocation).

{iv) Physically place the machine inewuctions v a2 o0 omory (loading),

(iii} Macros : To relieve programmess of the aoed ' 1opeat identical parts of their program, operating
systems provide a macro processing facility, which permits (he programmer to define an abbreviation for 2
part of his program and to use the abbreviation in his program. The macro processor treats the identical parts of
the program defines by the abbreviation as a macro defimtion and saves the definition.

({iv) Compilers : A compiler is a program that accepts a program writlen in a high level languwage and
produces an object program. A compiler compiles the program in one go and display results at the end.
Compilers are faster than interpreters.

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

F HLL Program Compiler -1——| Ohbject Program f

v

{v) Formal Systems : A formal system is an uninterpreted calculus. It consists of an alphaben, a set of
words called axioms, and a finite set of refations called rules of inference. Formal systems are becoming
important in the design, implementation and study of programming languages. Specifically, they can be used
to specily the syntax and the semantics of programming languages. They have been used in syutas-directed
compitation, compiler verification and complexity studies of languages.

Q. 2. What is Compiler? Describe compilation process. Also discuss [neremental compiler. 20

Ans. A compiler is a program that accepts the program written in high level language and converts it
o an equivalent machine level language program.

The compilation process (akes place in following phases |

{i) Lexical Phase : The three tasks of the lexical anatyses phase are ;

{1} To parse the source program into the basic elements or tokens of the language.

{n) To build a hteral table and an wdentifier table.

{in} To build a umitorm symbol table.

{ii) Syntax Phase : The function of the syntax phase is to recognize the maior constructs of rthe
lanpuage and tocall the appropriate action routines that will generate the intermediate form or matnix for these
constructs. In some compilers this phase 1s implenented by one large program that recognize each constrct.

(iii) Interpretation Phase : The interpretation phase is typically a collection of routines that are called
when a construct 15 recognized in the syntactic phase, The purpose of these ruutines called action routnes 15 (o
create an intermediate form of the source program and add information to the idenufier tahle

The separation of the syntactic phase from the interpretation phase is a logical division. The former
phase recognizes symtactic constructs while the latter interprets the precise meaning mio the matrix or
idenubier table.

{iv) Optimization : The two types of optimization 15 performed by the compiler-machine-dependent
and machine-independent.

Machine-dependent optimization is so intimately related (o the instructions thal get generated that i
was incorporated into the code generation phase, whereas machine-independent optimization was done in a
separate optimization phase,

(v} Storage Assipnment @ The purpose of this phase 1510

(1) Assign storage to alt vanable referenced in the source program,

tu} Assn slorage o all emporary locations that are necessary for intermediate results. The storage
references were reserved by the interpretation phase and did not appear in the sou: - code.

(i) Assign storage 1o literals. '

{iv}) Ensure that the storage 1s allocated and appropnate locations are initialized.

(vi) Code Generation : The purpose of the code generation phase is 10 produce the appropriate code.
The code generation phase has the matrix as input. It uses the code productions which define the operators that
may appear in the matrix to produce code, It also references the identifier tables and literal tables in order o
senerate proper address and code conversions.

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

(vii) Assembly Phase ; The task of the assembly phase depends on how much has been done in code
generation. 11 a ot of work has been done in code generation, then the assembly phase must resolve label
referenices 0 the objoct program, format the object deck, and formal the appropriate information for the
loader. At the other extreme, code generation has simply generled symbolic machine nstnuctions and
labels, the assembly phase must

(i} Resobve tabel references.

(1) Caloulate addresses,

{1t} Geverate binary machine instruchions,

{iv) Generate storage, convert literals.

Incremental Compiler : Incremental compiler s part of a running program that uses that compiler.
This allows new program items to be compiled at anytime, either extending the previously compiled programs
of teplacing some paiis of the program. Because an incremental compiler is part of the runtime system. source
code can be read in 21 anytime, from the terminal, from a file or possibly from a data structure consirucied by
the runntie program and transkated inte a machine block or function and the newly compiled program
fragment sz then immediately available for use by running system.

0. 3. What is Macro? Differentiate macre language and macro instruction? Discuss feature of
macro Taeility : 20

{i} Macro catls with macro instruction defining macros.

(i1} Conditional macro expansion.

Ans. In sunplest form, macro 15 an abbreviation for a sequence of operations. Macuo inspuctions {often
calied macros} are smgle-line abbrevia Eions for groups of insructions. In employing a macro, the programmer
exsenbially dofihes a ssnglc & n'nsuucuon 1o represent a block of code. By defining the appropriate macio
mstrictions, an assembly. la.uguag_e pmgranmwr can Tailor his own higher level facility in a convenient
miznner, at o cosi in controd over the structure of hus pmgram Macm mstruciofls are usually considered an
extension of the basic assembler language and the macro processor is viéwed as7an extension of the basic
assembler algornithm, As a form of programming language, however, macro instruction languages differ
significantly from assembly languages and compiled algebraic languages.

(i} Macro Ipstruction Defining Macros @ Macros are generalized abbrevianons for instruction
sequences, hothing that it seems reasonable 10 permit any valid statements in the abbreviated sequence,
inclucing macro definmtions. In this manner a single macro instruction might be used 1o simply the process of
defining a group of sirmular macros. 1t 15 important

I fca]t?.u that the inner macro delinition s nol MACRO
detined unul adter the puter macro has been called, DEFINE & SUB
The tollowing example defines & macro instriction MACRO
DEFINE, wluch when called with a subroutine & SuUB ay
?E:]r:emn:?rl:glm a nacro with the same name as the Definition | Definitionl CNOP 0.4
of macre | of macro | BAL 1,4

Example : Cpada DEFINE | & SUB DC Al&Y)

{iiy Condirional Macro Enpanmm Two L 15, = V(& SUB)
imporiant macro processor pseudo-ops, AlF and BALR 14, 15
AGD, permil conditional reordering of the MEND

MEND

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

sequence of macro expansion This allows conditional selection of the machine instructions that appear in
expansions of a macro call.

Example :) t
MACRO
& ARGO VARY KCOUNT, £ARGI, £ARG2, £ARGS
& ARGO A 1. £ARGI
AlF (&COUNT EQU), FINL
A 2, LARG2
All (&OOUNT EQ2), FINI
A 3, &ARG3
FINi MEND
LOOF 1 VARY 3. DATAL DATAZ, DATAZ
LOOP 2 VARY 2. DATAZ, DATAZ
LOOP 3 VARY . DATAL
DATA | [E S F5
DATA 2 DC F
DATA 3 BC Fl¥

Labels starting with a period (, }, such as FIMI, are macro labels and do not appear in the output of the
macro processor. The statement AIF (&COUNT EQ1) FINI directs the macro processor to skip to the
statement labelled. FINI if the parameter corresponding to £COUNT is 2 1; otherwise the macro processor is
1o continue with the statement following the AIF pseudo-op,

AIF is a conditional branch pseudo-op; it performs an arithmetic test and branches only if the test
condition is tnee. The AGO is an unconditipnal hranch pseudo-op or ‘goto” statement.

Q. 4. Describe the following concept of unix operaling system ; 20

(i} Swapping

(ii) Demand paging

(iiiy Fragmentation

(iv) User (o user communication

Also discuss advantage and disadvantage of each concept.

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

Ans. (i) Swapping : A process nceds o be in memory to be executed. A process, however, canbe
swapped temporarily out of mefiory to a backing store, and then brought back into the memory for continued
ExecuLion.

Mormially, a process that is swapped out will be swapped back into the same memory space that it
occupied previously, This restriction is dictated by the method of address binding, [fexecution-time binding is
being used, then a process can be swapped into a different memory space,

P S e
Operating M]
syshem
Swap out Process
" P,
User Swap in Process
Space Py
“--__.____“-_______..u-"

Swapping requires a bagking store. The backing store is @P_WI;I): a fast disk, it must be large enough
1o accommodate copies of all memory images for a1l users, and it must provide direct access to these memory
imiges. The system maintains a ready gueue, consisting of all processes whose memory images are on the
backing store or in memory and are ready to run, The dispatcher swaps out a process currenily in memory and
swaps in the desired process, It then reloads registers as normal and transfers control to the selected process.

The context-switch time in such a swapping is fairly high

(i) Demand Paging : A demand-paging system is sirnilar to a paging system with swapping. Processes
reside on secondary memory. When we cxecule a process, we swap if o miémory. Rathier than swappifig the
entire process into memory, however, we use a lazy swapper. A lazy SWapper never swaps a page into memory
unless that page will be needed. A swapper manipulates entire processes, whereas a pager is concerned with
the individual pages of a process.

f".r-____—-‘-"‘\
"""'--.._,,_______...-""'

eroararfTTI 1 Swap ou
A

]

o0
goooo

a0
Program ' 00
Swap in

:

tejsjsjat

When a process is to be swapped in, the pager guesses which pages will be used before the process is
swapped out again. Instead of swapping in a whole process, the pager brings only these necessary pages inio

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

memory. Thus, it avoids reading into memory, pages that will not be used anyway, decreasing the swap time
and the amount of physical memory needed.
(iiii) Fragmentation : Segmentation may cause external fragmentation, when all blocks of free memory
are oo small o accomodate a n'gment
Fragmeptation refers to a problem in memory management scheme. There are two types of
fragmentation :
{t) Internal fragmentation
(i1} External fragmentation
External fragmentation refers to the condition when we have a free blocks of memory but these blocks
are scafiered in such a way that inspite of having ap adequatc space 1or a process we can mot allocate it to a
process. Internal fragmentation reters to the memory space which is acquired by the process but never used,
i.e.. their is a memory for drivers, etc. in each process which may not be used by the process and results in
internal fiagmentation,
(ivy User to User Communication : There are fools that allow users to communicate with one another
through the shell-wall, write, (alk and mesg.
Wall : Wall command allow a system administrator as 1oot to message all users on the system. This is
wsed by script such as “*shutdown'" or “‘reboot’’, telling everyone to get off. Use is simple,
Example : rootz@quad-Swall
Systemn Maintainence Tongiht!
D (etrl D).
Write : Write command sends a message directly to a single user,
Example : kmr@quad~Swrite kumar|}
Hello how are you?
"D
Talk : Talk command is the realt-time user conununication tool. It 15 said real time because we can see
each character the other user enters. The "talk” tool requires a daemon process.
Mesg ; Mesg command takes the option y or n. It simply determines whether or not other people can put
vou using wiite and alk.
Example : kmr@quad-Smesg n
The main use is to aveid messages from annoying users.
Q. 5. How unix operating system is different from ordinary operating system? Discuss following
commands format ; 20
{i} Unix documentation {ii) Basic file operations {iti) Changing vour password
Ans. UNIX : Umx operating system is different from ordinary operating system in the following ways
(i) The File and Process : UNIX doesn't really care to know the type of file we are using. It considers
even direciories and devices as members GTT file system. A file to UNIX is just an array of bytes and can
contain virtually anything-text, object code or a directory siruciure, The second entity is the process, which is
the name given to a file when it is executed as a program.
(i) A Multiuser System : UNIX is a muliprogramming systerm. [t permits mubtiple programs b rn
and compete for the attention of the CPU. This can happen in two ways : Multiple users can run separate jobs

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

that share he system's CPU and resources, but & single user can also run multple jobs. UNTX is also a
mulliser system.

{iii) A Multitasking System : A single user can also run multiple tasks concurrendy, UNIX is a
mulntasking systen, It is usual for a user to edit a file, print another one on the printer, send emai to a fnend
and browse the WWW-all without leaving any of the applications. The kemnel is designed to handle g user's
multiple needs.

(a) UNIX Documentation : UNIX documentation is no longer the sore point il once was. Even though
its sometimes uneven, at most limes the treatment is guite lucid. The principal on-line facility available is the
man command, which remams the most important seference for commands and their configuration files.

UNIX offers an on-line help facility in the man conunand, Man displays the documentation-often
called the man documentation-of practically every command on the system,

Man presents the first page and pauses. ltdoes by sending ifs output to a pager program which displays
the contents of a file on page at a time. The pager 13 acmally a UNIX command, and man iz always

preconfiguied o be nsad with a specilic pager.
{b} Basic File Operations :
(i Creating File : Cat command is used to creaie a file.
$ cal = filcname
Exampie : 3§ cat = abc
(i) Displaying File : Cat comunand is also used to display the contents of a file.
% cat Filename
Example: § catabe
(ki) Deleting a File : rm conwnand is used to delete the Gile,
b rm filename
Example : § mm abe
1iv) Renaming Files : mv renames (moves) files. [t hos twe funcuons ;
{1} It renarnes a file or directory.
{if) It moves a group of files 10 a different directory,
3 mv oldfilename newfilename
Example : % mvabe xyi
my doesn't create a copy of the file.
{¢) Changing Your Password : Password command i used to change user password.
§ password
Password | Changing password for user |
Enter Iogin pasgword ; ®****%* | Ak for old password)
New passworg : *eesss i
Re-enter new password : 4¥ees
passwd (SYSTEM) ; passwd successfully changed for user 1,
Q. 6. How the following test manipulation takes pi.ves ; 20
{I) File statistics (if} Searching for patterns
(iil) AM K utility (iv). Translating characters

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

Ams. (a) File Statistics : UNIX provides the file command to determine the type of file, especiaily ofan

ordipary file
3 fnile”

This command identifes the file type by examining the magic number that is embedded in the first few
bytes of the file. Every file type has a unique magic number,

UNIX fearures a universal word-counting program. The we command counts lines, words and
characters, depending on the options used, It takes one or more filenames as its arguments, and displays a four
columnar outpai.

£ we filename

Example : £ we abe

3 20103 abe
we counts 3 lines, 20 words and 103 characrers. The filename bas also been shown in the fourth column.
we options ;

| : Option counts only the number of lines.

w : Option counts only the number of words.

¢ : Option counts only the number of characters.

{b) Searching for Pallerns : prep scans its inpu* for a pam:m and can display the ulﬁcted plﬁfl‘l‘l,, the
line numbers or l.hl': ﬁl:m-mes where lhc padtem OCCUrS,

Syntax :

§ grep options pattern filenames(s)

grep stands for global regular expression. grep searches for pattemn in one or more filenames., The first
argument is the pattern and ones remaining are filenames,

Exampie :

P grep “zales’ emp.lst

grep options :

{i) Ignoring Case (-i) : When we look for a name, but are not sure of the case, grep offers the ~i option.

{ii} Deleting Lines {~v) : The —v ophion selects all except lines containing the pattern,

{iii) Displaying Linc Numbers (-n) : The —n(number) option displays the line numbers containing the
pattern, along with the lines

{iv) Counting Lines Containing Pattern (- ¢} : The - c {count) option counts the number of lines
containing (he patiem.

{v) Displaying Filenames (- [} : The - | (list) option displays only the names of files contaming the
pattern.

{¢) AWK Utility : The awk command made a late eniry into the UNIX systemin 1977 to augment the
tool kit with suitable report formatting capabihities. Named after its authors, Aho, Weéinberger and Kemighan,
awk, until the advent of perl, was the most powerful wiility for text manipulation. awk appears a gawk (GNU
awk} in Linux

awk is not just & command, bul a programming langauge 100 It uses an unusual syntax that uses two
components and requires single quotes and curly braces.

Syntax :

awk options ‘selection_criteria {action]’ file(s)

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

The selection_criteria (a form addressing) filters input and selects lines for the action component o act
upon. This component is enclosed within curly braces. The selection_cnteria and action constitute an awk
program Lhat is surrounded by a set of single quotes.

{d) Translating Characters : The tr (transiate) filter manipulates individual characters in a line. More
specificatly, it transiates characters using one of W COmpact eXpressions :

Syntax : tr options expression | expression 2 standard input tr takes input only from the standard jnput;
it doesn't take a filename as argument, By default, it translates each character in expression | on its mapped
counterpart in expression 2.
tr aptions :

{i) Deleting Characters (-d) : -d option is used to dulete the characters/and/from the file,

{ii) Compressing Multiple Consecutive Characiers {-s} : UNTX tools work best with fields rather
than columns, 50 its preferable to use files with delimited ficlds. In that case, lines need not be of fixed length,
we can climinate all redundant spaces with the -s (squeeze) option, which squeezes multiple consecutive
oceurrences of its argument to a single character.

{iii) Complementing Values of Expression (~c) : Finally, the -¢ (complement) option complements
the set of characters in the expression. Thus, to delete all characters cxcept the/apd’. We can combine the -d
and -c oplicns.

Q. 7. What is sheli? How shells are different kernel? Why shell prog are necessary (if so justify)?
Discuss the fl.ll]!l]"l-"'il'l.g : 20

(i) Wild cards (if} Steell consiructs

Ans. A Unix shell, i5 a command interpreter and script host that provides a traditional user interface for
the Unix operating system and for Unix-like systems. Users direct the operation of computer by entering
commuand input as text for 2 command line interpreter to execute or by creating text scripts of ohe or more such
commands, The most generic sense of term shell means any program that users use to fype commands.

The kernel of an operating system is something you will never see, It basically enables your programs
to execute. [t handles events generated by hardware and software, and manages access to resources, The
kemnel usually defines a few abstractions like files, processes, sockets, directonies, ete. Which correspond o an
internal state it remembers about last operations, s0 that 4 program may issue a session of operation more
efficiently.

A shell is a special program that is uswally integrated in any O3S distribution and which offers humans an
interface with the kernel, The way it appears to users may vary fiom system to system, but the concept is
always the same :

{i) Allow the user to select a program to be started and optionally give it session-specific arguments.

{ii} Allow wivial operation on the local storage listing the content of directories, moving and copying
files across the sysiem,

(i) Wild Cards : The meta characters that are used 1o construct the generalized pattern for matching
filenames belong to a category called wild-cards.

Following are the wild carnds.

* — Any number of characters including none.
T = A single character,
(ijk] — A single character-cither an i, j or k.
[x-z] —+ A single character within the ASCII range of the characters x and z.
[ijk] — A single character that &5 not i, j or k.
['x~z] = A single character that &8 not within ASCII range of the character x and z,

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

{pal I, pot 2 .} —»pat 1, pat d, etc.

(1) Shell Construets : The term shell also refers to a particular programy, such as the Bourne slicll, sh,
‘The Bouwrne shefl was the shell nsed in early versions ef UNIX and became a de facta standard; every
LI iX-like system has atleast on shell compatible with the Bourne shell. The Boume shell program is located
in the UNTX File bicrarchy abbin/sh. On some systems, such as DSD, binfsh is a Bourhe shell or equivalent,
but on other systems such as LINUXban'sh is likely to be a link to a compatible, but more feature rich shell
POSTN specilics s standard shell as a st sulset of the Bom shell,

Q. B. Ldiscuss basic featire of LINUX operading system, How LINUX operating system differ
from umix operaling system? [scuss advantage and disadvaminge of LINUX. Fiil

Ans, Features of LINUX :

{¥) Lioux is Technically Advanved : Linux, il not the most advanced OS5 out there, at least among the
most sdvaneed operating systems.

(ily Lassax is highly Configorable ; You con customaze Linux exactly to your liking. You can make it
wark exactly the way you want and on the platform yon wam.

(iliy Linux is Secure : Linux has roany features thal prolect yvour system from intruders.

(iv] Soltware Dependencies : Software dependencies is an excellem thing because il helps you keep
things small 2nd simple.

Dfferences between Unix and Linux @ Following are the difference between Unix and Linux

(i) Lok weas developed by AT and T in 1969, Whereas Linux was first released by its inventor Linux
Torvalds in 1991,

{ii} Unix requires a more powerful hardware configuration. 1t will work in large mainframe computers
bunwill net work man x86 based personal computer. Linux, however, has small hardware requirements and it
witl work an both a large mainfrante computer and an 136 based personal computer,

{iii} Unax treats everything as a file, it provides greater security forusers. Linux uses a Unix architectore
a3 its bases and provides more faciliies and applicabons.

{iv) Uhnax distnbution s POSIX whereas Linox disoributions are Redhat, Fedora, Susee, Mandriva and
Libuntu, =)

CebUnix s the foundation for a number of operating syetems, with Linux being the most populaz one,

Advantapes of Linuy :

{I}Sluhili.lljr : Lunux can crash, but il is much barder 1o do. IF an application crashes m Lunux, it will
wanally not hanm the kemet or other processes. |

(iiy Free Saftware 1 Most software can be obfaired without cost for Linux.

(i} Runs on Old Hardware : Linux runs even of old 386 or 486 processars,

(iv) Sceurity 1 Lanux has the advantage of the code being in the public domain. This can be a
double-edged sword, while you can look at the code, and developers can fix holes rapadly, it also means
hackers can Fnd bad ¢nde,

Disadvancages of Linux :

(8) Learning Curve ¢ Linuay is very dilficult te leam,

(i} No Suppert for all Programs : Linux do net suppor all the programs which may be useful for user.
For example, Linux does not support office sutte program.

{iif) ot all Hardware Compafible : 5ome of the lalestand greatest hardware that is betng produced i
not compatihly with Linnx,

