Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

B.E.
Fifth Semester Examination, May-2008
System Programming & System Administration (1T-303-E)

Nobe = Altemp, omly five questions AL guestions carry equal marks,
). 1. {a) Discass the yole and funciions of B svstem manager, it}
Ans. The role and functions of a system manager arc {ollowing :
{I) User Access Persalssions : “The system manager provide users the username and passwords,
Manager also decides iheir access permissions.
iy Schema Delinitioo @ Syscem watager s tespousilile for sehems delinion or formation of
database structure in the system,
(it} Software Updation ; Syslom munager is respunsible for installation and maintcnance and
updation of soflwares wsed m system.]
(i¥) Fault Dlingnosis : 1t is the responsibility of the system manager Lo find faule in che system, if there
exists a Bl he should diagnoses che faalt,
(v Backuyp : The sysiem manager should talke the backup of the system ta avoid any data loss.
(viy File Avcess Permission : Syslem manager assigns various access fils permission fike read only,
rCacl=WTItE, g
Q. £ (b) Whai da ynu understand by control instructions 7 DNscuss various types of control
lnstructions in shell. 21
Ans. Control Jostructieny : Conirol insitudtions are the instroctions. Lhe controls the xoqnence of
cxecntion Bl the instruclion in a pragram, Varions contrel instructions are used in programs to make a
program cxccule according to the requirement of esers. Following are same of the: conurol instructions :
{0) Switch-Casy : Swileh-case is usied 1o exeente 3 speeilic block of code depending on the cunditiun
given i case stetement, -
Example ;
int i,
switchii)
i
Casec 1
prinef "This is cuse 17;
bieuak:
Casc 2 :
printl "This is case 27,
break,
delaul
priggl "This i3 delault case”,
i
Or char &
switch [a}

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

Case A :
printf “Alphabet A",
break;

Case ‘B’ :
printf “Alphabel B";
break;

default :
printf “Wrong Choice™;

}

{iiy Goto : Goto is used to transfer the control of program to a specific block of instructions in a

program.
Example :
C:
{
print{ “Hello India”
¢ priotf “India is a Great Country™;
goto C;
(iiiy If-Else : If-clse statements or instructions are used to execute either of the instructions block,
Example :
int i ==5;
(i > 5)
: printf “i is greater than 57;
}
else
printf “i s less than or equal 1o 5™
Q. 2. How would you perform the following task under unix environment : 20
{a) Sorting file
(b)Y Searching for pattern
(¢} Printing files
(d) Comparing files _
Ans. {a) Sorting File : In unix sorting of file is performed using sort command.
Symtax :

§ sort flecname

by default the sorting is done in ascending order,

By default, sort recorder lines in ASCH collating sequence-whitespace first, then numerals,
uppercase lelters and finally lowercase letters, This default sorting sequence can be altered by using
cerfain options.

The various sort options are following :

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

~tchar = Uses delimeters char to identify fields,

=k n = Soris on nth field.

~k m, n = Soris starts on mth field and ends on nth field.

-k m, n - Starts sort on nth column of mth feld. .

-u = Removes repeated lines.

—n =+ Sorts numerically.

-t = Reverses sorl order.

-f -+ Folds lowercase to equivalent uppercase {case-insensitive}.

—m list = Merges sorted files in list,

—¢ = Checks if file is sorted.

—o filename = Places output in file filename.

{b) Searching for Pattern : In unix grep command is used for searching patterns. Grep stands for
Global Regular Expression Printer.

Syntax :

$ grep ‘pattern’ filename,

Various grep Options :

-i = Ignores case for matching,

—v = Doesn't display lines matching expression,

=n -» Displays line numbers along with lines.

-¢ = Displays count of number of occurrences.

-1 = Displays list of filenames only.

-t ckp ~ Specifies expression exp with this option. Can use multiple times. Also used for matching
expression beginning with a hypen,

~x =+ Matches pattern with entire line.

~f file = Takes patterns from file, one per line,

E ~ Treals patiern as an extended regular expression.

~F = Matches multiple fixed strings.

(¢) Printing Files : pr command is used in unix for printing files. The pr command prepares a file for
printing by adding suitable headers, footersand formatted text. pr adds five lines of margin at the top and
five at the bottom. The lower portion of the page does not contain anvthing whereas header shows date &
time of last modification of file, along wwith the filename and page number.

Syntax

3 pr Nilename

Variows Pr Options :

-k = Where k is an integer, prints file in k columns.

—d - Dioublespaces input, reduces clutier.

—n = Nidmbers lines, which help in debugging code.

—on = Offsets lines by n spaces, increases left margin of page.

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

(d) Comparing Files : [n unix three differem commands are vsed in comparmg files. Following arg
those commands

(i} covp : cmp 15 used to compare (wo files byte by byte, and the location of the first mismarch is
cchoed on the screen, By default, emp does not bather about possible subsequemt mismatches.

Synian % cmp kel file2

The - (list) apbon gives a detatled list of the byte number, and the differing bvtes in actil for cuch
character thal differs in both files.

(i) comm : comm s the command veed 1o find out the recerds available in one e and v i the
other, nr even those common to both comm command requires two sorted ies,

Symtax

$ comm lilel (ile?

The omput of comm command shows three colomns ¢

First column contains unique records of filel.

Second column comtains unique records of file2.

Third colemn contains common records of both files.

(i) difT: diff command is slso used to display file dilferences, it alzo tells the user which fines in one
file have to be changed to make the wo files identical.

Syntax :
% dilf fited file2
3. . What do you understand by an assembler ? Describie how assemblers are designed & explain
stogle phase and two phase assemblér. ull

Ans. Assembler : An assembler is a program thal accepls an assembly lancoage program ane
produces its machine language ceuivalent along with infomsaticon for the loader,

Assambly ; Machine Language
fanguage Assemoler * zind other information
program : or the laader

Database |

Design of Assembler : Following arc steps in assembler design

(i) Statement of Problem : The first pass of assembler has only 1o define the svmbols, the second
pass can then generale the instructions and addresses specifically an assembler must do the folfowing :

(i) Gencrale instructions

(a) Evaluate the mnemaonic in the eperation fiedd Lo produce its maching code.

(b} Evaluate the subficlds-find the value of cach symbol, progess literals and assign addresscs,

(11} Process pseudo ops

Pass 1: Purpise-dafine symbols and literals,

| Pass2: Purposc-genetate object program.

(i) Data Structore ;

Puss 1: Dats Bases |

{i} Input spurce program.

{11} A Location Counter {LC)

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

(i) A table, the Machine-Operation Table (MOT)
{iv) A table, the Pseudo-Operation Table (POT)
{¥) A tabie, the Symbol Table (ST)

{vi) A table, the Literal Table (LT)

(vii) A copy of the input to be used later by pass 2.

Pass 1

Read card

Read 1

%
Search

Feund

Which

pseudo-op table
MOTGET 1
< Mol found
Search
machine-op table

MOTGET

x

L+ iength

x

Procass any |iterals,
enter nto neral
table

LTSTO

ane 7 [}

w
AdjusiLC
1o proper
algnment

L « Length
of dala field

D TH

Is
thera symbol
in tabel fiekd
7

LC +~ LC+L

EQU

Evaluate
aperand

EVAL

END

g

Assign Stor-
age locations
to literals

LITASS

Assign valug
to symbol in
label field

ETSTO

Assign curment
value of LC to
S}‘Mﬂl}l

STSTO

¥
Wite copy of card

¥

on fite for use by

pass 2
WRITE 1

e

Detailed Pass 1 Flowcha

rt

I

Rewind
~and
reset copy
file

Onto
pass 2

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

Read card
from file copy 1-@
READ 2
*
Search |Found
' pseudo-op || Which
table ane? [JDE EQu Jusing DROP
POTGET2 : START|MEoate operand END
Mot found & Adjust LC 1o L]
= Eem |+ FIJPEI' ﬂ.l'm nivent EVAL -
mechine-op 1 Indicate base
lable Farm constant Enter base Lh:eg, ﬂﬂ:td
and inseri in reg. no. and available
cisibibd assembled valye infp
— Imd program base table DROP
op code
byteand | [L< tength DCGEN mfm
format code | | of data field je—" x —F—
L « length DLENGTH Print listing 2
PRINT
Evaluate both reg- Evaluate register
ister expressions and index
and insart into expressions and
2nd byte linsert into 2 nd byls
EWVAL EVAL
"P:‘lﬂh‘ calutlate Generate Lilerals
assembled effective address ﬁ;::r.'riig
instruction {*7 {EA) of operand T
PUNCH EVAL . 2 T
¥ +
"Print* Determine appropriate STOR,
assembly displacement and base b
@-’ listing line register O + C(B) - EA
PRINT BTGET
* +

LC LG+ L Put B&D into
I es3and 4

Fig. Detailed Pass 2 Flowchart

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

Pass 2 : Data Bases

(i) Copy of source program input to pass 1

(11} Location Counter (LC7)

(1ii) A able, the Machine Operation Table (MOT)

(iv) Adable, Pseundo-Operation Table (POT)

(v) The Symbol Tabte (ST)

(vi) A Lable, 1he Base Table (BT}

(vil) A workspace, INST

(i) A workspace, FRINT LINE.,

(viil) A workspace, PUNCH CARD

(i) Format of Databases + The third step in our design procedure is to specify the Tormat and
content of cach of the database-a task that must be undertaken even bq:[ure describing the specific
algorithm underlying the assembler design,

(iv) Algorithin @ The lollowing flowcharts describe in detail an algorithm for an assembler, These
diagrams represents a simplification of the operations performed in a complex assembler but they
illestrate most of the logical processes involved.

(v} Look for Modularity - We now review our design, leoking for functions that can |_'u: isolated.
Typically, such functions Mall into two categories :

(i) Mutli-use

(i) Unigue,

1} 4. Explain the evolution of major componenis of p programming .'ij‘sttm 20

Ans. The [ollowing are evolution of the components of a programming system :

{i) Assembler : An assembler is a program that takes as an input an assembly language program amd
produces an equivalent machine language program,

(i) Loaders : A loader is a program thal places programs into memory and prepares them For
execution, Il is the purpose of the Inader to assure that objecl programs are placed n memory in an
exeeutable form,

{iii) flacros: If ina program a specilic block of code isto be repeated again and again we use macro
for that block. Macro is an abbreviation used for the specific block of code. We can call the same block by
giving the macro name.

{iv) Compilers & Interpreters : Compiler is a program that accepts a program written in a high level
language and produces an object program. An interpeeter is a program thal appears 10 ¢xecute a source
program asf it were machine language.

(¥} Formal Systens : A formal svstem is an uninlerpreted caleulus. B consists of an alphaber, a set
ol word called axioms and & finite sl of relations called rules of inference.

Q. 5. What do you understand by macro instruction, explzin the following ; 0

(1} Macro insteoction arguments -

{b} Conditional macro exparsion

Ans. Macro instructions often called macros are single-lined abbrewiations for groups of
instructions, In emplavies a macro, the programmer essentially delincs a single "instruction” Lo represent

5

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

a block of code. For every occurrence of this one-line macro instruction in program, the macro processing
assembler will substitute the entire block. Macro instructions are usually considered as an extension of the
basic assembler language.

(a) Macro Instruction Arguments : The macro facility is capable of inserting blocks of instruction
in place of macro calls.. An important extension of this facility consists of providing for arguments, or
paramelers, in macro calls. Corresponding macro dummy arguments will appear in macro definition.

Example :
A 1, DATA 1
A 2, DATA 1
A 3, DATA 1
A 1, DATA 2
A 2, DATA 2
A 3, DATA 2
DATA 1 DC S,
DATA 2 DC F 10

In the above example DATA 1 & DATA 2 are called a macro instruction argument or dunny
argument.

{b} Conditional Macro Expansion : Two impaortant macro processor pseudo-ops, AIF and AGO,
permit conditional reordering of the sequence of macro expansion. This allows conditional selection of
the machine instructions that appear in expansions of a macro call.

AlF is a conditional branch pseudo-op, it performs an arithmetic test and branches only if the 1ested
condition is true.

AGO is an unconditional branch pseudo-op or goto statement. It specifies a label appearing on
some other statement in the macro instruction definition,

Example : .
MACRO
& ARGO VARY &COUNT, &ARG1, £ARG2, &ARG3
& ARGO A 1, ZARG1
AIF (& COUNT EQ 1). FINI
A 2,&ARG2
AIF (& COUNT EQ2). FINI
A 3, & ARG3
FINI MED D-
LOOP 1 VAR Y 3, DATA 1, DATA 2, DATA 3

LOOP 2 VAR 'Y 2, DATA 3, DATA 2 i

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

LOOP 1 VAR Y 1, DATA 1)
DATA 1 DC F'5§
DATA 2 DC F i
DATA 3 DC F' 15

). 6. What is shell programming ? Explain. 20
{a) Shell variables

{h) Wila cards

(¢) Advanced features of shell programming

Ans. (8) Shell Variables : The shell supports variables that are useful both in the command line and

icripts.

& variable assignment is of the form vanable = value

ic,$count = 5
Bul its evaluation requires the $ as prefix to the variable name.
i.e., § echo $ count.

A variable can also be assigned the value of another variable. -

ie., total = § count.

Variable names begin with a letter but can contain numerals and the —as the other characters, Name
case sensitive, Unlike in programming languapes, shall variables are not typed: or don't need to use a
-, int or long prefix when we define them, Infact, we don't even have to declare them before we can use
n. Al shell variables are of the string type, which means even a number like 231 is stored as a string
cr than in binary.

(b) Wild Cards : The metacharacters that are used to consiruct the generalized pattern for
ching filenames belongs to a category called wild cards.

Wild Card Matches

* Any number of characters including none

? A single character.

[ijk] A single character-cither am i, j or k.

[x-2) A single character that is within the ASCII range of
characters x and #.

[tijk] A single character that is not an i, j or k.

[t x-z) A single character that is not within the ASCII range of characiers
x and z,

{pat 1, pat 2.....} pat 1, pat 2, etc..
{c) Advanced Features of Shell Programming : Following are the advanced features of shell

Tamming :
(i) Interactive Scrpits : The read statement is used 1o make scripts interactive,
(if) Command Line Arguments : The user can also use command line arguments in scripts,
(iiii) Conditional Execution : The logical operators && and /7 are used for conditional execution.

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

{iv) Expression Evaluation : The user can evaluate expressions using lest statement.
Q. 7. In unix o/s how the following events are handled : 2

{n) Logging in

{b) Changing user password

{c} Looking at the (ile contents

{d} Basic operators on flles

Ans. (a) Logging in : The login prompt indicates that the terminal is available for someone to log i

This message also indicates that the previous user has logged out. Enter your username al the logi
prompt and press Enter key. Now system prompts for password, enter your secrefe password and you wi

be logged in.

- login : kumar | Enter |

Password : ** * * * [Enter |
If by mistake we enter wrong username or password the message flashes as

login incorrect
; login :
{b) Changing User Password : The passwd command is used for changing user password.
Syntax : § passwd
Example : passwd J
Enter login password : * * * **

New Password : ** ****

Re-enter New password :® 2+ ** ®
passwd (SYSTEM) : passwd successfully changed.
passwd expects us to respond three times. First, it prompts for the old password. Next, it chegl

whether we have enlered a valid password, and if we have, it then prompts for new password. Enter ti
new password using the password naming rules. Finally, passwd asks us to reenter the new password.

(¢} Looking at File Contents : The cal command is one of the most well-known commands of (

unix system for looking' locking at file contents

Syntax : ¥ cat flcname
cal options !
(i) Displaying Mon-printing Characters (-¥) : Cat 15 normally used for displaying text files oni

Executables, when seen with cat, simply display junk. If we have non-printing ASCH characters in o
input, we can use cal with -V option 1o display these characters.

files

(ii) Numbering Lines (-n) : The -n option numbers lines.
{d) Basic Operations on Files : Following are the commands and operations performed by them «

(i) emp : cmp is used to compare two files.

Syntax : § cmp filel file2
{ti) ep : cp is used to copy a file.)
Symtax : § ¢p filel hle2

The filel is copied into file2.

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

(i) rm e rm is veed o delete file.

Byntax : £ rm filename

iiv) mv : mv is used to rename files.

Syntax : $ mv filel file2

Q. 8. Describe the following terms : 20

{a) Block and fragments

ib) Inode table

ic) AWK utilicy

(d) Overlays

Ans, {a} Block and Fragments : When we issue an instruction to save a file, the write operation takes
place in chunks or blocks. Each block here represents an integral number of disk sectors of 512 bytes each.
The datz is first transferred to a buffer cache which the kernel later writes to disk,

When a block of memory is divided into small parts for specific purpose, these parts of block is
known as [ragments i.e., fragments are the smaller parts of a block which when combined together can
result in a big block of memory.

Fragment|Fragmant] Fragment)
1 2

—— Rlogk1 T %] *—— Block2 ———+

(b} Inode Table : At the time of booting, all sccondary file systems mount i.c., attach themselves Lo
the main file system creating the illusion of a single file system to the user, Every file is associated with a
table that contains all that we could possibly need to know about a file-excepl its name and contents, This
table is called the inode (index mode) and is accessed by the inode number. The inode contains the
following attributes of a file :

(i) File type

(i} File permissions

(iii) Number of links

{iv) The UID of the owner

{v) The GID of the group owner

{wi) File sizc in bytes

{vii) Date and time of last modification

{viii) Date and time of last access

{ix) Date and time of last change of the inode

{x) An array of pointers to keep track of all disk blocks used by the file.

(¢} AWK Utility : The awk command made a late entry into the UNIX system in 1977 to augment the
tool kit with suitable report formatting capabilities. Named after its authors, Aho, Weinberger and
Kernighan, awk, until the advent of perf, was the most powerful wtility for text manipulation. It combines
features of several filters, though its report writing capability is the most useful. awk can do several things
and some of them quite well. Unlike other filters, it operates at the field level and can easily access,

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

transform and format individual fields in a line. It also accepts extended regular expressions (EREs) for
pattern matching. .

{d) Overfays : Overlays belp in dynamic loading of subroutines into the main memory for execution.
All the subroutines of a program are not required at the same time and loading all of them at a same time
results in inefficiency. Moreover, if we have a subroutine that is larger than the size of main memory we
cannot load the complete subrouting into memory and unable to execute, but overlays solves this problem
by loading only the part of the subroutine that is required recently and keeping the rest of subroutine on
the disk, this helps in increasing the cfficiency and effective memory utilisation.

