Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

B.E.
Sixth Semester Examination, 2010

Digital System Design (EE-310-E)

Mote @ Attempt any five questions.

Q. 1. {a) Discuss all types of data used in VHDL.

Ans. Data Types used in VHDL : Every data obyect in VHDL can hold a value that belongs to a
set ol values. This set of valoes s specificd by using & type declaration, a type 5 a name that has
associated with i a set of values and a set of operations, Certain types and operations that can bz
pertormed un objects of these types.

The possible tvpes that can exist i the language can be categorised mnto the following four major
catepunes

(i) Scalar Types : Values belonging 1o these types appear in a sequeniial order,

{ii} Composite Types : These are composed of clements of a single types {an array type) or
elemenis of different 1ypes (record) tvr -

(iii} Access Tvpes : These provides access 1o objecis of 0 given type (via pointer),

{iv) File Types : These provides access to objects that contains a sequence of values of given type.

1115 possible 1w derive subtypes from predefined or user defined types.

(). 1. (b) Define and discuss with suitable examples all types of overloading.

Ans. Manly there are two types of overloading occurs i VHDL

{i} Subprogram overloading (11} Operator overloading

{i) Subprogram Overloading : Sometimes it 1s convenient to have two or more subprozram with
the same pame. In such a case, the subprogram name 15 said to be overloaded. also the subprogram are
satd 1o he overloaded

For example |

Fupcnon COUNT (ORANGES @ INTEGER ) return INTEGER:
Function COUNT (APPLES : BIT) return INTEGER

Ioth functions are overloaded since they have the same name, COUNT,

(i) Operator Overloading : Operator overloading 15 one of the most useful features in the
language. When a standard operator symbol 15 made w hehave differently based on the type of us
operands. The operator s saud to be overloaded.

For example

The "and" operation 15 defined for the arguments of type BIT and BOOLFAN and for
one-dimensional array of BIT and BOOLEAN only.

What if the arguments were of type 'MVL', it is possible argument the 'and' operations on a
function that operates on arpument of MVL,



Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

Exampie : type MVL is ("'U", "0, T 'Z');
funcion "and” (L. B - MVL) return MYL;
function "or” (L, B : MVL) return MVL,
function "not" (L. R : MVL) return MVL;
(). 1. Discuss the following with suitable examples :
(i) Arrays and Loops (ii) Case Statement
(iii} Assertion Statement {iv) Functions
Ans. (1) Arrays and Loops : An array type represents a collection of values all belonping to a
single type.
Examples for array type declaration ;
type ADDRESS WORD is array (0 to 62} of BIT,
tvpe DATA WORD 15 array (7 down 1o 0) of STD ULOGIC,
Elcments of an array can be specilying the index values into array,
A loop statement 15 used 1o iterate through a set of sequential statements.
e syntax for loop statement 15 ;
Hoop label} weration-scheme loop
sequential statements
end loop [loop label;
Example :FACTORIAL =1
For NUMBER 1n 2 1o N loop
FAUTORIAL = FACTORIAL*NUMBER;

end loop.

(ii) Case Statement . The format of cass statement is case expression is
when chojees = Sequential-statements. . branch #]
when choices = Sequential-statements..... . branch #2

ocan have any number of branches

{when others = sequential statement].........Jast branch

end case
The case statement selects one of the branches for execution based on the values of the expression
Example :Case DAY 4

when TUE = POCKET MONEY: © &

when MON'WED = POCKET MONEY: = 2;

when FRI to SUN = POCKET MONEY: =7,

when others = POCKET MONEY = ()

end case;



Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

(iii) Assertion Statements : Assertion statements are useful in modeling constraints of za cntity.
For example, you may want to check if a signal vaiues lies in within a specified range, or check the s2tup
holds times for signal arrival at the input of ai entity.

The syntax of assertion statement 15 :
assert boolean_expression
[repurt string_expression]
|severity expression):
1t the value of the Boolean expression is false, the report message is printed along with severity
level,
Example :asscri NOW = o ns or
inow last eventon Cy )>=HOLD _TIME
report "Hold time is w short”
severity FAILURE:
(iv) Functions : Functions are used to define frequently used sequential algorithms. that returns
single value, :

This value 15 returned to the calling program using a return statement. Some of their comimon uses
are as resolution function or type conversion function.

Example : function LARGEST (TOTAL _NO : INTEGER; SET : PATTERN)
refurn REAL 1s
variahle RETURN VALUE : REAL : = 0.0:
bewin
for K in SET' RANGE loop
i SET(K) = RETURM_VALUE then
RETURN VALLE = SET(K)
end 1f;
end laop,;
return VALUE
end LARGEST;
Q). 3. (a) Compare the following :
(i) Sequential assignment statement and concurrent assignment statement.
{(ii) Behavioural Modelling and siroctural modeiling.

Ans. (I} Sequential Assignment Statement and Copcurrent Assignment Statement : We know
that signal assignment statements can also appeat in the body of process statement : such sistements are
called seyuential statcment. While signal assignment statements that appear outside of o process are
called concurrent assignment statement.

Concurrent signal assignment statement are event-triggered that is, they are exccuted. Whenever
there is an evenl on a signai appears in us expression, While. sequential assigniment statements are not
event triggered and are executed in sequence in relation 1o others.



Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

Consider lallowing staterents for their difference
architecture SEQ_S1G_ASG of FRAGMENT | 15
...AL B oand Z are sipnals

* begin

process i)
I[hn_:;n ...... followings are sequential assigrument statements
; A<=B
; Z=A

| end process;
|

| end
archiecre CON SIGASG of FRAGMENTL s
heyin
A==0
2e=A
witil.

Verde grom previous diiferences, the concurzent signal assignment statement 1s identical 1o the
sequential sigial assgnment statement in tenns of behaviour

For every concurrent ASG statement. there & an equivalent process statement with the same
Szionl L meanng.

(i) Behavioural Modelling Vs, Structural Modelling :
bn Hehavioural Modelling :
tef Bntity declaration descrives the external mterface of entity. The syntax is
entity entity name is
| senernet i
TR 11T E PR |
Fentity atem declaranon
[bewin entity statement|
endfentiiy]
finn Arehieciore Body Syntax
archieciere.,. . mame of ealily name is
hewm
[\ ovimeen, STTEMERTS |
endjarchiecture]
(g Process statenient @
|provess label) process.. . |is]

bewmn



Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

statements
end process

In Structural Modelling :

(1} Companent Declaration @ (in this first declare components)
component ........ name |is)

Iport ]
end component [none];

{11) Component Installation : Second is component installation
component_label © component _namne [port map;
cnd structure,

Q. 3. (b) Write short notes on Packages and Libraries.

Ans. Packages : A package provides a convenieni mechanism to store and share declarations thal
are common across many design units. A package 1s represented by -

{1} A package declaration and, optionally.
fuh A package body,

A package declaration contains a set of declarations that may possible be shared by many design
unil. it defines the wterface to the package. that s, it defines items that can be made visihle o others,

Svntax : Package name 15

end| package!
A package body primarily contains the behaviour of the subprograms and the value of the differed
constants declared impulse,
Libraries : A complied design unir s stored in a gesien library, a design library inarea of storagze
m the files system of the host environment.

The tormvat of this storage is not defined by the language. An arbitrary number of design libraries
may be specified. Fach design library has a logical name which is referenced inside a VHDL description.

The ibranes 15 classitied as |

(i} Primary Unit ;

fa) Entiry declaration {hi Packaee declaranon
tob Conbiearanion declaration

(i} Secondary Units

) Architceture bodies (b1 Package bodies
Q. 4. (a) Write VHDL code for design of 16 : 1 MUX using 4 : 1 M1UX.
Ans. LiBRARY IEEE:

LSk [EEESTD LOGIC 1164 ALL,



Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

USE 1IEEE STD LOGIC_ARITH.ALL;
ENTITY MUXI1615 15
PORT (A : IN STD _LOGIC_VECTOR(15 DOWN TO 0);
S:INSTD_LOGIC_VECTOR (3 DOWN TO O}
Z : OUT 5TD_LOGICk
END MUX 1615;
ARCHITECTURE struc OF MUX 1615 is
SIGNAL 21, Z2, 73, Z4STD_LOGIC;
COMPONENT MUX 415b1s
PORT (A, B, C, D, 80, 51 : IN STD_LOGIC):
Q: OUT STD_LOGICY;
END COMPONENT;
BEGIN
M1 MUX41b PORT MAP (A(D), A{1), A(2). A(3), 5(0). B(1), Z1);
M2 : MUX41b PORT MAP (A(4). A(5), A(6), A(T), 5(0), 8(1), £2),
M3 : MUX41E PORT MAP (A(8), A(9), A(10), A(11), $(0), S(1), Z3);
M4 : MUX41b PORT MAP (A(12), A(13), A(14), A(15), S(0), 5(1), Z4):
M5 MUX41b PORT MAT (Z1, 22, Z3, 74, 8(2), 5(3). Z);
END 5TRUC:
Q. 4. (b} What are generics? Explain the role of generics in VHDL with suitable example.

Ans, Generics @ It 15 often useful 1o pass certain types of information into a design description
from its environment. Examples of such mformation are rise and fall delays and the size of interface
ports, this 1s accomplished by using generics. Generics of an entity are declared along with its ports in
the entity declaration and example of a generic N-imput and gate 15 shown,

entity AND GATE is
generic (N : NATURALY);
Port{A : in BIT_VECTOR (Il to N); Z : out BITY;
cnd AND GATE:
architecture GENERIC EX of AND_GATE is
begin
process(A)
variable AND OUT : BIT:
Z==AND OUT,
end process;
end GENERIC EX:

A peneric declares a constant object of mode in and can be used in the entity declaration and s
corresponding architecture bodies.



Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

I'he value of this consrant can be specified as a globally static expression in on of the followings :
{1) Entity declaration {ii} Component declaration
(1) Component instantiation {iv) Configuration specification
(v b Conliguration declaration
The value of genernc must be determinable at elaboration time.
Q. 5. Write VHDL code for following :
fiy 3 Bit Binary to Grav Code Converier
{ii} Boolean Function F = AB + CD.
Ans. [i) 3 Bit Binary to Gray Code Converter :
library wee,
use iece std logie-1164 all;
ennty neon_blue is
port (b in std logic vector (2down to 0},
¢ @ put std_logic vector {2 down 1o 0);
end neon_b2g;
architecture a of neon_b2g is
beyin
e(2) <= b(2)
wily==h2) Xorib(l11)
g(0) == (b{1) X or b(0};
end a;
(ii) Boolean Funection F = AB+CD:
VHDL code for F = AB + CD
architecture A STRUCTURE of FUNCTION F is component OR2
port (X, Y :in BIT; Z : out BIT),
end component;
component AND2 ;
port (A, B in BIT; X : out BIT); c
end component;
component AND2
port (C, D : in BIT; Y : out BIT);
begin
X : AND2 port map (A, B, X);
Y ANDZ port map (C, D, Y),
Z OR2 portmap (X, Y. £

end function F strucrure;



Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

Q. 6. Write VHDL code for following :

(i) 4 bit UP/DOWN Counter

(ii) 4 bit serial in and paraliel out shift register.

Ans. (i) 4 bit UP/DOWN Counter :
Library ieee;
use ieee-std _logic_1164.all;
entity bit 4ud counter is
port (S, clk in std_logic; g : inout std_logic_vector (3 down to 0)
end bit 4 ud counter;
architecture struc of bit 4 ud counter s
component MUX21
port {a, b, 5 : in std_logic: Y - out std_logic);
end component;
component ffi
port (1, clk, reset : in std_logie; g, q_mnv - mout std_logic),
end component;
signal m: std_logic vector (2 down to 0},
signal g-inv.std_logic_vector (3 down to 0);
begin
fy : tft port map ('I', clk, "0, g{0), g-mmv{0}});
My, - MUXZ1 portmap (g(0). g-inv(0), s, m(0));
¢ : [ft port map ('I', mi{0}, '0%, q({1}, g-invi1));
M, - MUX 21 portmap (g(1), g-mnv(l), s, m{1)):
t; ¢ fft port map ("1, m(1), '0', q(2), q-inv{2}};
M, : MUXZ21 portmap (g(2). g-inv(2), s, {m{2}};
iy o Tt portmap ("', m{2), "0°, g{3), g-inv (3);
end structure;

(i} 4 Bit Serial In and Parallel Out Shiflt Register :
Library 1eee;
use ece.std_logie 1164.all;
entity shift is
port{C, ST. in std_logic;
o : out std logic vector (3 down to 0));
end shift;
architecture archi shift is

signal temp : std logic vector {3 down to 0));



Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

begin

processic)

begin

if ("¢’ event and ¢ ="1") then

temp <= temp (2 down to 0) & SI;
end if;

end process;

po <= temp;

end arch;

Q. 7. Explain how a simple microcomputer system works. Explain its implementation using
VHDL.

Ans. Specification & Implementation of a Microcomputer :
{1) Basic components of a computer system.
(ii) Informal and pvhdl-based description

(1i1) Architecture

{iv) Implementation

{v) Operation of simple microcomputer system
XMC : eXample Micro Compauter :

(i) Tts cycle time

{1i) Processor

(iii) Memory subsystem

{iv} Input'output (1/O) subsystem

Input Output
subgystem Pmc::;:u:rr subsystem
Memory

pwvhdl Structural Description :

LIBRARY ieee:

USE ieee.std_logic_1164.all;
PACKAGE comp_pkg IS
SUBTYPE WordT

1S

SUBTYPE MAddrT IS
SUBTYPE I0OAddrT IS
SUBTYPE Byte T



Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

s

TYPE Status I8

STD_LOGIC_VEGTOR(31 DOWN TO 0);

STD_LOGIC VECTOR(23 DOWN TO 0);

STD_LOGIC VECTOR(10 DOWN TO 0},

STD_LOGIC VECTOR(7 DOWN TO 0);

(undef, p_reset, fetch, execute, memop, ioop);

FUNCTION get_carty (RA_Data, RB_Datx, Imm, Opcode: STD_LOGIC_VECTOR)
RETURN 5TD_LOGIC; )
FUNCTION get_ovlf (RA Data, RB_Data, Imm, Opcode: STD _LOGIC VECTOR)
RETURN 5TD_LOGIC;

FUNCTION get cc (RA_Data, RB_Data, Opcode: STD_LOGIC_VECTOR)
RETURN STD_LOGIC_VECTOR,;

END comp_pkg;

PACKAGE BODY comp_pkg IS

FUNCTION get carry (RA_Data, RB Data, Imm, Opcode: STD _LOGIC VECTOR)
RETURN STD_LOGIC

IS VARIABLE cy: STD _LOGIC ; ="0/;

BEGIN

——description of carry generation included here

RETURN{cy);

END get_carry;

FUNCTION get ovf (RA_Data, RB_Data, Imm, Opcode; STD_LOGIC VECTOR)
RETURN STD_LOGIC

1S VARIABLE ovf: STD_LOGIC : =0,

BEGIN

—description of overflow generation included here

RETURN{avf);

END get_ovf;

FUNCTION get_cc (RA_Data. RB_Data, Opcode : STD_LOGIC_VECTOR)
RETURN STD_LOGIC_VECTOR

IS VARIABLE cc : STD I OGIC_VECTOR(2 DOWN TO 0): = "0000";

BEGIN

—description of cc generation included here

RETURMN(cc);

END get_cc;



Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

END comp_pki;

BEGIN

Ul : ENTITY Memory

PORT MAP (MemAddr, MemLength, MemBd, MemWr, MemEnahle,

MemBdy, MemData);

U2 : ENTITY 10

PORT MAP (10Addr, 1OLength, IORd, I0WTr, IOEnable, I0Rdy, 10Data);

U3 : ENTITY Processor

PORT MAP (MemAddr, MemData, MemLength, MemRd, MemWr,

MemEnable, MemRdy, 10Addr, [OData, I0Length, IORd, 10Wr,

IOEnable, IORdy,

Status. Reset, Clk);

END structural;

Q. 8. Write short notes on :

{a) PEEL (b) PLAs

{c) Operators

Ans. {a) PEEL : The PEEL is a Programmabile Electricity Erasable Logic (PEEL device providing
an attractive alternative 1o ordinary PLDs. The PEEL offers the performance, flexibility, case of design
and production practicality needed by logic designers today. The PEEL is available in 20-pin DIP,
PLCC. SOIC and TSSOP packages with speeds ranging from 5ns to 25ns with power consumption as
low as 37mA. EE-Reprogrammability provide the convenience of instant reprogramming for
development and reusable production inventory minimizing the impact of programming changes or
srrors. EE-Reprogrammability also improves factory testability, thus, assuring the highest quality
possible. '

The programmable AND array of the PEEL is formed by input lings intersecting product terms.
The input lines and product terms are used as follows :

36 Input Lines :

(i) 20 input lines carry the true and complement of the signals applied to the 10 input pins.

{11} 16 additional lines carry the true and complement values of feedback or input signals from the
B 1Ds,

74 Product Terms :

{1) 64 product terms (arranged i groups of 8) are used to form sum of product funciions.

{11} B output enable terms {(one for each 1/Q).

(i) | global synchronous present term.

{iv) 1 global asynchronous clear term.

(b} PLA's : A programmable logic array {(PLA) is a programmable device used to implement
combinational logic circuits. The PLA has a set of programmable AND gate planes, which link to a set of



Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

programmable OR gate planes, which can then be conditionally complemented to produce an output.
This layout allows for a large number of logic functions to be synthesized in the sum of products (and
sometimes product of sums) canonical forms.

One applicaticn of a PLA is to implement the control over a datapath. [t defines various states inan
instruction set. and produces the next state (by conditional branching). [e.g.. if the machine 15 in state 2,
and will go 1o state 4 il the mstruction contains an immediate field; then the PLA should define the
actions of the control in state 2, will set the next state to be 4 1f the instruction contains an immediate
lield, aned will detine the actions of the control in state 4]. Programmable logic arrays should correspond
to a state diagram for the system.

Cther commonly used programmable logic devices are PAL, CPLD and FPGA.

Note that the use of the word "programmable” does not indicate that all PLAs are
[ield-programmabkle, in fact many are mask-programmed during manufacture in the same manner as a
mask ROM. This is particularly true of PLAs that are embedded in more complex and numerous
integrated circuits such as microprocessors. PLAs that can be programmed after manufacture are called
FPLA (Ficld Programmable PLA).

{¢) Operators : There are seven groups of predefined VHDL operators
{1) Binary logical operators © and or nand nor xor xnor

(it} Relational operators ; =/ = <o >3=

{11} Shifis operators @ sl sel sla sra rol ror

(1v) Adding operators | + - & (concalenation)

(v Lnary sign operannrs ;4 —

{vi) Multipiyving operators : * / mod rem

{vir) Muscellaneous operators : not abs*®

The above classes are arranged in increasing priority when parentheses are not used.



