Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

B.E.
Fourth Semester Examination, Dec-2006

OBJECT ORIENTED PROGRAMMING USING C++

Note :Attempt any five questions. All questions carry equal marks.
(3. 1. {a) List the restrictions and limitations in overloading operators.
Ans. The following restrictions apply to operator overloading :
|. Invention of new operators is not allowed. For example
void operator (@ (int); //illegal, @ is not a built-in operator or a type name.

2. MNeither the precedence nor the number of arguments of an operator may be altered. An overloaded
&& for example, must have exactly two arguments-just like the built-in && operator.

3. The following operators cannot be overloaded -

Direct member access operator ¥
De-reference pointer to class member operator

Scope resolution operator

Conditional operator

Size of operator %

Size of operator size of

Similarly, and of the new casting operators : static_cast <>, dynamic_cast <>, reinterpret_cast<> and
const_cast<", as well as the # and ##preprocessor tokens, may not be overloaded. ‘e

Q. 1. (b) What is type conversion? Discuss following, using examples :

(i) Conversion lrom basic type to class type

(ii) Conversion from class type to basic type,

Ans. Answer ty pe conversions :

An expression of a given type is implicitly converied in the following situations :
* The expression is used as an operand of an arithmetic or logical operation.

- * The expression is used as a condition in a if statement or an iteration statement (such as a for loop).
The expression will be converted to a Boolean (or an integer in C89),

* The expression is used in a switch statement. The expression will be converted to an integral type.
* The expression is used as an initialization, This includes the following !
* An assignment is made to an value that has a different type than the assigned value.

* A function is provided an argument value that has adifferent type than the parameter.

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

type of the function.

Use-defined conversions (C++ only) : User-defined conversions aliow you to specify conversions with
constructors how with conversion functions. User-defined conversions are implicitly used in addition to stan-
dard conversigns for conversion of initializes, functions arguments, function return values, expression oper-
ands, expressions controlling iteration, section statements, and explicit type conversions.

There are two types of user-defined conversions
* Conversion by constructor
* Conversion functions

You can define a member function of a class, called a conversion function, that converts from the type of
its class to another specified type.

Conversion function syntax

Z3a b . OpETAtor ., .. + .o CONVETSION type......>

'-¢class—-:-' +-const-—+

-volatile-
T Ty T o [SRSRHTPRRRIIEL) Rt >
ET—— | -{....function_body..}
|V 1 '

'....pointer_operator - +-'
A conversion function that belongs to a class X specifies a conversion from the class type X to the type
specified by the conversion_type. ’
0. 2. (a) What is a constructor? Explain the use of dynamic constructor, using suitable example.

Ans. A constructor is a special member function whose task is to initialize the objects of its class. It is
special because its name is the same as the class name. The constructor is invoked whenever an object of its
associated class is created. It is called constructor because it constructs the value of data members of the class.
The construction is declared and defined as follows : -

class integer
{
int m, n;
public ;
inter (void);
1 i

integer : ; integer (void)
i

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

m=0,n=0;
}

The dynamic initialization of constructions is also possible. The initial value of an object may be pro-
vided during run time. One advantage of dynamic initialization is that we can provide various initialization
format using overloaded constructors. This provides the flexibility of using different format of data at run time
depending upon the situation.

Q. 2. {(b) Differentiate between :

{i) Struct and class

{if) Constructor and destructor.

Ans. (i) Struet and Class ;

Classes : A class is an expanded concept of a data structure : instead of holding only data, it can hold both
data and functions,

An object is an instantiating of a class. [n terms of variables, a class would be the type, and an object
would be the variable.

Classes are generally declared using the keyword class, with the following format ;
class class name |
access specifier [;
member |;
access_specifier_2,

member 2;

} object_names;

Structure : A structure is a collection of variables under a single name. These variables can be of
different types and each has a name which is used to select it from the structure. A structure is a convenient way
of grouping several pmues of related information together.

A structure can be defined as a new named type, thus extending the number of available types. It can use
other structures, arrays or pointers as some of its members, though this can get complicated unless you are
careful,

Defining a structure : A structure type is usually defined near to the start of a file using a typedef
statement.typedef defines and names a new type, allowing its use throughout the program.typedefs usually
occur just after the #define and #include statements in & file.

Here is an example structure definition.
typedef struct {
char name [64];
char course [128];

int age;

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

int year,
} student;

{B) Constructors and Destructors : A class can include a special function called constructor, which is
automatically called whenever a new object of this class is created. This constructor function must have the
same name as the class, and cannot have any return type; not even void,

We are going to implement CRectangle including a constructor
Hexample : class constructor
include <ipstream>
using namespace sid;
class CRectangle |
int width, height;
public :
CRectangle {int, int);
int area () {return (width *height); }
S _
CRectangle :; CRectangle (int a, int b) {
width =a;
height = b;
i
int main (} |
CRectansle rect (3, 45;
CRectangle recth (5.6);
cout << "rect area ; "<<regtarea () << endl
cout <= "recth area : "<<recth. area () <<endl;
return (; .
}

The destructor fulfills the opposite functionality, It is automatically called when an object is destroyed,
gither because its scope of existence has finished (for example, if it was defined as a local object within a
function and the function ends) or because it is an object dynamically assigned and it is released using the
operator delete.

The destructor must have the same name as the class, but preceded with a tilde sign (!) and it must also
return no value.

The use of destructors is especially suitable when an object assigns dynamic memory during its lifetime
and at the moment of being destroyed we want to release the memory that the object was allocated.

#/ example on constructors and destructors

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

ﬁincludcﬁiuslmalm:*
' using namespace std:

class CRectangle |
int *width, * height;
public: -
CRectanglé (int, int); '
~CRectangle {);
int area {) {return (*width **height}:}
b
CRectangle :: CRectangle (int a, intb)}
width = new int;
height = new int;
*width = a;
*height = b;
¥s
CRectangle : : ~ CRectangle () {
delete width;
delete height;
}
int main { }{
CRectangle rect (3, 4), rectb (5, 6);
cout << "rect area:" <<rect. area () << endl;
cout << "recth area : "<<rectb.area () <<endl:
return 0; ' :
i

Q. 3. (a) Differentiate between pmceduml. abstraction and data abstraction.

Ans. Procedural abstraction : One of the main purpeses of using functions is to aid in the top down
design of programs. During the design stage, as a problem is subdivided into tasks (and then into sub-tasks,
sub-sub-tasks, etc.), the problem solver (programmer) should have to consider only what a function is to do
and not be concerned about the details of the function. The function name and comments at the beginning of
the function should be sufficient to inform the user as to what the function does. (Indeed, during the early
stages or program development, experienced programmers often use simple "dummy” functions or stubs,
which simply return an arbitrary value of the correct type, to best out the control flow of the main or higher
level program component).

Developing functions in this manner is referred to as functional or procedural abstraction. This process is

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

aided by the use of value parameters and local variables declared within the body of a function. "Functions
written in this manner can be regarded as "black boxes.” As users of the function, we neither know nor care

why they work,

Data Abstraction : It refers to the act of representing essential features without including the back-
ground details or explanation. Classes uses the concept of abstraction and are defined as a list of abstract
attributes such as size, weight and cost and function to operate these attributes. The function that operate on
these data are called methods or member functions.

Q. 3. (b) What do you understand by an abstract class? Explain,

Ans. An abstract class is a class that is designed ta be specifically used as a base class. An abstract class
contains at least one pure virtual function. You declare a pure virtual function by using a pure specifier (=0) in
the declaration of a virtual member function in the class declaration, .

The following is an example of an abstract class :
class AB |
public :
virtual \I’ﬁid f{)=10;
;o
Function AB :: fis a pure virtual function. A function declaration cannot have both a pure specifier and
& definition. For example, the compiler will not allow the following :

struct A |
virwalvoidg () | } =0y
b "
You cannot use an abstract class as'a parameter type, a function return type, or the type of an explicit

conversion, nor can you declare an object of an abstract class. You can, however, declare pointers and refer-
ences to an abstract class. The following example demonstrates this :

struct A |

virtual void £{)=

1

struct B: A [

virtual vaid £{) { }

e

Error : i
/f Class A is an abstract class

MAg()

/! Error :

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

/l Class A is an abstract class
M woid h (A);
A&T(A &)
intmaing){ ' :
if Etror : -
{f Class A is an absiract
A
A* pa;
B b
{/ Error :
{f Class A is an abstract class
/! Static_cast <A> (b):
}
Q. 4. {a) What do you understand by a header file? Discuss the use of lostream header file,

Ans. Header files are basically used to include the built in functions for the program. We have used the
following # include directive is the program.

include <iostream™=

This directive cause the preprocessor to add the contents of the iostream file to program. It contains
declaration for the identifier cout and operator <<. Some versions of C-++ uses the header file called iostream.n.
The header file iostream should be included at the beginning of all program that use input/output statement.
Some implementations use isotream. hpp vet other uses jostream. h» x.i -

Q. 4. (b) Differentiate between macro and function, using suitable examples.

Ans, Functions are ségments of code that allow you to better organize your code. You can think of a
function as a small program, and of a program as a collection of functions. | could have written a function for
the "Hellow World" program :

include < iostream . h>

void print_hellow {) { I/ This line declares the function

cout << “Hellow World!"n"; N This is the body, which defines the function
} . |

void main () [

print _hellow {); /f This is how the function is called

i

If the function returns a value then the type of that value must be specified in function-type. For the

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

moment this could be int, float or char. If the function does not return a value then the function-type
must be void. - : 2

The function-name follows the same rules of composition as identifiers.
The parameter-list lists the formal parameters of the function together with their types.

The local-definitions are definitions of variables that are used in the function-implementation. Thesc
variables have no meaning outside the function. .

The function-implermnentation consists of C++ executable statements that implement the effect of the
function.

Macro : C++ offers new capabilities, some of which supplant those offered by the ANSIC preprocessor.
These new capabilities enhance the rype safery and predictability of the language :

&

In C++, objects declared as const can be used in constant expressions. This allows programs o de-
clare constraints that have type and value information, and ¢oumerations that can be viewed symbaoli-
cally with the debumger. Using the preprocessor #define directive to define constants is not as precise,
Mo storage is allocated for a const object unless an expression that takes its address 15 found in the
program.

The C++ in line function capability supplants function_type macros. The advantages of using on-line
functions over macros are !

Type safety. In line funcrions are subject to the same type checking as normal functions. Macros are
not type safe.

Correct handling of arguments that have side effects. In line functions evaluate the expressions sup-
plied as arguments prior 1o entering the function body. Therefore, there is no chance that an expres-
sion with side effects will be unsafe,

The #undef directive removes the definition of a macro. Once you have removed the definition, you can
redefine the macro 1o a different value. The #define Directive and The # undef Directive discuss the #defing
and #undef directives, respectively.

Q. 5. (a) Differentiate between static and dynamic linking.

Ans. The overloaded member functions are sefected for invoking by matching arguments both type and
number. This information is known ta the compiler at the compile time and therefore compiler is able to select
the appropriate function for a particular call at compile time itself. This is called early binding or static binding
or static linking. 1t is also called compile time polymorphism,

At run time, when it is known what class objects are under consideration, he appropriate version of
function is invoked. Since the function is linked with particular class much later after the compilation, This
process is termed as late binding. It is also called dynamic binding because the selection of appropriate Rinc-
tion is done dynamically at runtime,

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

0. 5. (b) What is a pure virtual function? Justify its use in an example.
Ans, A "do nothing" function may be defined as follows !
virtual void display = 0;

Such functions are called pure virtual functions, A pure virtual function is a function declared in a base
class that has no definition relative to the base class. In such cases, the compiler requires each derived class to
either define the function or redeclare it as a pure virtual function. A class containing pure virtual function
cannol be used to declare any objects of its own,

). 6. fa) Differentiate between put {) and write () and get {) and read ().

Ans. The classes isotream and ostream define two member functions get {) and put {) to handle the
single character input/output operations. There are two types of get () functions. We can use both get (char*)
and get (void) prototypes to fetch a character including the blank space, tab and newline character, The get
{char*} version assigns the input character to its argument and get (void) returns the input character. The
function put () as member of ostream class can be used to output a line of text, character by character, !

Eg. , Cout. Put ("X")
"The write ([ine, size).

The first argument line represents the name of the string to be displayed and the second argument size
indicates the number of characters to display.

The write and read () handle the data in binary form. This means that the values are stored in the disk file
in same format in which they are stored in internal memory. The binary input and output functions takes
following form.

infile.read ((char*) & V, size of (v});
Outfile write ((char*) & V, size of {v));.
Q. 6. (b) Discass the following file mode parameters : ios ::app, ios::noreplace, ios::trunk, jos::out.

Ans, ios:zapp : Append to end of file. It takes us to end of file when it is opened. It can be used with the
files capable of output.

ios::no replace : opens the file if already exists.

ws::trunk : Delete the contents of file if it exists,

ios::out : Open the file for writing only,

Q. 7. (a) What is an exception? How is an exception handled in C++?

Ans. C++ exception handling mechanism is basically built upon three keywords namely try, throw, and
catch. The keyword try is used to preface a block of statement which may generate exceptions. This block of
statements is known as try block. When exception is detected, it is thrown using a throw statement in the try
block. A catch block defined by the keyword "catch” catches the exception thrown by the throw statement in
the try block and handles it appropriately.

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

Eg.

Try block

Detect &
throws exception

Exception

object

Catch block

Catches & handles
the exception

). 7. (b) Write a program ta demonstrate the concept of rethrowing an exception.
Ans.

include <iostream.h>

void divide (double x, double v}

{

coul <<"inside function",
try

{
if (v ==0.0)
throw v,
else

coul << "Division =" << x/y;

catch (double)

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

{
cout << "caught double inside function™;
throw,
i
~cout << "end of function";
|
int main {)
t
cout <="inside main”;
try
i
divide (10.5, 2.0); -
divide (20.0, 0.0);
H
catch (double)
i
cout <=<"caught double inside main";
} :
cout << "end of main";
retum 0;
b

(). 8. Discuss the effect of inheritance on the visibility of members in ;
(2} Public derivation

(b} Private derivation

{c) Protected derivation.

Ams,

The keywords private, protected and public may appear in any order and any number of times in the
declaration of class eg.

Class beta
i
protected ;

Public :

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

Class B
Not inheritable Not inheritable
— Private e
Protected I
Public
ll Class D] : Public B Class D2 : Private B
Private Private
Protecied Protected
Public ” Public
Private
» Protected
> Public

Private :

Public : r

e
is & valid class definition.
Base Class Derived class visibility
Visibility Public Private Protected

derivation
Private Not Not Mot
inherited inherited inherited

Protected Protected Private Protected
Public Public Private Protected

