B.Tech.

—— -

FIFTH SEMESTER EXAMINATION, 2008-09

COMPILER DESIGN

Time : 3 Hours]

Note : (i) Atternpt all questions.

(i} All cuestions carry equal marks.

Q. 1. Attempt any four of the following
sections. 5x4=20

Q. 1. (a) How boot strapping of compiler
to more than one machine is done ? Discuss.

Ans. Using a facilities offered by a
language to compile itself is the essence of boot
strapping. For boot straping, a compiler is
characterized by three langnages :

(1) The source lahguage S that it compiles.

(2) The target language T that it generates
code for.

(3) The implementation language I that it

is written in.

The three language may all be quite
different. A compiler may mun on one machine
and produce target code for another machine.
Such a compiler is often called cross compiler.

Suppose for - a new language L in
implementation language 3 to generate code for
machine N ie, we create LSN. If an existing
compiler for S runs on machine M and generate
code for M ie. SMM: If LSN is run through

SMM, we get a compiler LMN.
(L N[L M|
8|8 M _MJ
M

LSN+ SMM = LMN

[Total Marks : 100

Q. 1. (b) What do you understand by

pass ? Discuss merits and demerits of
multi-pass and single-pass compiler.

Ans, Pass in a procedure at which

compiler, compiles the source program. Several

phases of compilation are usually implemented

in a single ‘pass, consisting of reading an input
file and writing an output file. Several phases of
compilers are grouped and performed various
passes, this is called multipasses.

Advantages & Disadvantages

(1) It is desirable to have relatively few
passes, since it takes time to read and write
intermediate files.

(2) If we group several phases into one
pass, we may be forced to keep the entire
program in memoty.

(3} For some phases, grouping into one
pass presents few problems. For example the
interface between the lexical and syntatic
analyzers can often be limited to a single token.

(4) In a single pass it is very difficult to
perform code generation untill the intermediate
representation has been completely generated.

{5) In a single pass all the errors are
encountered after the compilation process is
complete.

(6) In a multipass, errors are displayed
according to the phases that are combined into
different pass.

Q. 1. {c) Why do translators are needed ?

Ans. Translaters are the system software
which translate are language into another
language i.e. that translate source language to

Download All Btech Stuff From StudentSuvidha.com

Page 1

http://studentsuvidha.com/
http://studentsuvidha.com/

Page 2

target language Where source language is either high level, assembly or low level language and
target language is either high level or law level language.

Source Language Target language
{High level —» Compiler H— (low level or
language) high level
language)
Different type of translaters

(1) Compiler : Compiler is a translator which converts source langauge to farget language
where source language must be high level language and target language is either high or low level
language.

(2) Assembler : Assembler is a translator that translate the assembly language into machine
language.

The simplest form of assembler makes two .
passes over I:he input. In first pass, all’ the ﬁs:;l?;;g—_ﬂ Assembler '_——'lr::;i‘:;ee
identifiers that denote storage locations are found :
and stored in symbol table. In the second pass the'assembler scans the input again, this time it
translates each operation code into the sequence of bits representing that operation in machine
language and it translates each identifiers representing a location into the address given for that
identifiers in the symbol table,

Q. 1. (d} Why do translators are needed ?

Ans, Hierarchical Structure of Programming Language

Programming language

|
I I |

High level Middle level Low level
| [| ! Mic Instruction
Procedural ~ Functional Object oriented logical
Binary lodes
Paslal LiSP C++ Proloog
Basic ML Java
LIST Assembly language

Q. 1. (e) Discuss the role of different data structures in compiler design.

Ans, Role of Different Data Structure in Compiler Design

1. Stack : Stack is used in constructing the passing table and also used in scanning the input. It
is used to calculate infix, prefix and postfix notation.

2, Tree : Tree is used in the second phase of compiler design, where tokens are grouped into
hierarchical representation that is called parse tree. It is also used to check the ambiguity of any
grammar. If for any grammar there are more than are parse tree then the grammar is ambiguous.

Otherwise the grammar is anambiguous tree is also used to check the data type of the
expression. In the third phase of compiler known as syntax directed translation.

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

3. Graph : Graph is used for code
optimization. DAG (Directed acyclic graph) is
used to optimize the intermediate code
generated in the fourth phase of compiler.

Another graph known as flow graph is
used to decide the flow of basic blocks. Basic
block contains the group of statements of
similar type. How basic blocks are executed will

be decided by the flow graph.
Q. 2. Attempt any two of the following
sections : 10x 2=20

Q. 2. (@ What do you understand by
preliminary scanning ? Describe the ways how
lexical analyzer is grouped to make a pass.

Ans. Prelimary scanning, is usually based
on a finite state machine. It has encoded within
it information on the possible sequences of
characters that can be contained within any of
the tokens it handles (individual instances of
these character sequences are known as
lexemes). For instance, an infeger token may
contain nay sequence of numerical digit
characters. In many cases, the <first
non-whitespace character can be used to deduce
the kind of token that follows and subsequent
input characters are then processed one at a
time until reaching a character that is not in the
set of characters acceptable for that token (this
is known as the maximal munch rule). In some
languages the lexeme creation rules are more
complicated and may involve backtracking
over previously read characters lexical analysis
" is the process of converting a sequence of
characters into a sequence of token. Programs
performing lexical analysis are called lexical
analyzers or lexers. A lexer is often organized
as separate scanner and tokenizer functions,
though the boundaries may not be clearly
defined.

A token is a categorized block of text. The
block of text corresponding to the token is
known as a lexeme. A lexical analyzer processes

lexemes to categorize them according to
function, giving them meaning This
assignment of meaning is known as
tokenization. A token can look like anything; it
just needs to be a useful part of the structured
text.

Consider this expression in the C
programming language :

sum=3+2;

Tokenized in the following table :

lexeme token type
sum IDENT
= ASSIGN_OP
3 NUMBER
+ ADD_OP
2 NUMBER
; SEMICOLON

Tokens are frequently defined by regular
expressions, which are understood by a lexical
analyzer generator such as lex. The lexical
analyzer (either generated automatically by a
tool like lex, or hand-crafted) reads in a stream
of characters, identifies the lexemes in the
stream, and categorizes them into tokens. This
is called “tokenizing”. If the lexer finds an
invalid token, it will report an error.

Q. 2. (b) Why it is difficult to simulate
NFA ? Discuss a method for constructing an
NFA from a regular expression.

Ans. While we have a situation where we
could choose a transition on E or on a seal input
symbol causes ambiguity. These situations, in
which the transition function is multivalued,
make it hard to simulate an MFA with a
computer program.

Download All Btech Stuff From StudentSuvidha.com

Page 3

http://studentsuvidha.com/
http://studentsuvidha.com/

Page 4

Method for constructing an NFA from a
regular expression

We first parse mgular expression r into its
contituent subexpression then follow the
following steps :

1. For t, construct the NFA

Start @ t . (d) For parentherized regular expression
{S) use N(S) itself as the NFA.
i — new start state ‘ Q. 2. {c} What do you understand by
F - new accepting state. ambiguity in grammar ? How the grammar is
This recognizes [t} made unambiguous using precedence order
2. For a in £, construct the NFA and associativity among arithmetic operators.

Ans. Ambiguity of Grammar : A

Start a \
grammar is said to be ambiguous if it produces

this recognizes fa} more than one parse tree or if it produces more

3. Suppose N(S) and Nt} are NFA's for than one left or right derivative.
regular expressions is S and t. For example consider the grammer.
ESE+E{E*EIE~E }id | (E)

for a strid. id; + id; x id,

N /N
fh AT
w, 21N\ /1IN
. E*E E+E

(i) For regular expression 5/t construct the |] | |
composite NFA N(S/t) idy idy idy idy

i ~ new start state (2)

r : E

— new accepting state / I \\

there is a transition t from i to start state E + E
of N(s) and N{t) there is a transition t from } /I\
accepting state of N(s) and N(t) to F. This { 7%
recognizes L(s) U L{t) F | !

(b) For regular expression st ' (13 'I: ?

i 6 ids
id, |
id,

Starting state of N(s) is starting state of there is two parse tree for string
composite NFA and accepting state of N(tj is Q1+ id2*idy so the above grammar is
the accepting state of composite NFA. ambiguous.

(c) For regular experssion S*. For the most parsers, the grammar must

be unambiguous. We should climinate the

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

ambiguity in the grammar during the design
phase of the compiler, we have to prefer cne of
the parse tree of a sentence to disambiguate the
grammer. Ambiguous grammar
disambiguate according to the precedence and
associativity rule.
Example :)
To disambiguate the grammar
Es>E+EIE*EIEAElid | (E)
We can use the precedence and
associativity as follows :
A (right to left)
* (left to right)
+ {left to right)
we get the following unambiguous
grammar
E->E+T/T
T~ T*F/F
F->G*F/G
G — id/(E)
now for string id, + id, * id;

E
1N
+ T

E
|
T 71\
| T *F
F | |
| F G
c | f
[Y6 i,
id, |

id,

Only one parse tree is possible. S0 new
grammar is unambiguous.

Q. 3. Attempt any two of the following
sections, 10x 2=20

Q. 3. (@ Explhin how stack
implementation of shift reduce parsing is
done, considering the grammar :

E-—+E+E

E—>E*E

can be

E—— (E)
E——id

and input string as id, +id; * id;

Ans,
Stack Input Action
1.5 idy + id, *id; | Shift
$
2. %id, +ida*idy $ reduce by E
— id
3. $E +id,*id3 § Shift
488 + id;*idy$ | Shift
5 $E +id, *idy $ reduce by E
— id
6. $E+ E *idy$ Shift
7.8E + E* id: $ Shift
B.SE+E'dy |$ reduce by E
— id
9. 3E+ E*E $ reduce by E
— E*E
10.5E + E $ reduce by E
—E+E
11. $E $ accept

Q. 3. (b) What do you understand by lefi
recursion and how it is eliminated ?

Ans. Left recursion : A grammar is left
recursive if it has a non terminal. A such that
there is a derivation A —— A « for some string
.

Example : A grammar

E—>E+E
E—-E"*E

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

is left recursive because there is a

production
E—» E(+)
A

A A o

Elimination of Left Recursion

A left recutsive pair fo production A — A
a /B could be replaced by non-left recursive
productions.

A=p Al
Al s a Al
Example : Consider the grammar
E-»>E+TIT
—left recursive production

T >T*F/F

F = (E)/id

Consider
E—EG) T
[1\
A A o B

A--)BA] becomes
E - TE!

Al>a AYE

E' 5+ TEWL
Consider

T—PT®.~'F

1!\ ll\ \c: \B

T - FT?

T! > *FTt

now non-left recorsive grammar is

E - TE!

E! >+ TEA

T - FT!

T! 5> *FT'1

F o (E)id

Q. 3. (c Discuss the role of syntax
directed translation scheme.

Ans. Syntax Directed Translation

Syntax-directed translation refers to a
method of compiler implementation where the
source language translation is completely
driven by the parser. In other words, the
parsing process and parse trees are used to
direct semantic analysis and the translation of
the source program. This can be a separate
phase of a compiler or we can augment our
conventional grammar with information to
control the semantic analysis and translation.
Such grammars are called attribute grammars.

We augment a grammar by associating
attributes _with each grammar symbol that
describes its properties. As attribute has a name
and an associated value : a string, a number, a
type, .a memory location, an assigned
register—whatever information we need. For
example, variables may have an attribute “type”
{which records the declared type of a variable,
useful later in type-checking) or an integer
constant may have an attribute “value” (which
we will later need to generate code).

With each production in a grammar, we
give semantic rules or actions, which describe
how to compute the attribute values associated
with each grammar symbol in a production. The
attribute value for a parse node may depend on
information from its children nodes below or its
siblings and parent node above.

Conider this production, augmented with
a set of actions that use the “value” attribute for
a digit node to store the apropriate numeric
value. Below, we use the syntax x. a to refer to
the attribute a associated with symbol x.

digit — 0 {digit . value =0}

1 {digit . value =1}

2 [digit . value =2

9 {digit . value =9}

Atftributes may be passed up a parse tree
to be used by other productions :

Download All Btech Stuff From StudentSuvidha.com

Page 6

http://studentsuvidha.com/
http://studentsuvidha.com/

1int 1 — digit {int 1 . value = digit . value}
int 2 digit {int 1. value =int 2 . value * 10 + digit
. value}

We are using subscripts in this example to
clarify which attribute we are referring to, so
int? and int 2 are different instances of the same
non-terminal symbol, There are two types of
attributes we might encounter : synthesized or
inherited.

(1) Synthesized attributes are those
attributes that are passed up a parse tree, ie.,
the left 2 side attribute is computed from the
right-side attributes.

(2) Inherited attributes are those that are
passed down a parse tree, ie, the right-side
attributes are derived from the left-side
attributes (or other right-side attributes). These
attributes are used for passing information
about the context to nodes further down the
tree.

Yk.a=f(X.a Yl.a Y2.a ..
Yk+1.a Yk+1.a, ..,Yn. a

Top-Down SDT

We can implement - syntax-directed
translation in either a top-down or a bottom-up
parser and we’ll briefly investigate each
approach. First, let's look at adding attribute
information to_a hand- constructed top-down
recursive-descent parser. Our example will be a
very simple FTP client, where the parser accepts
user commands and uses a syntax-directecd
translation to act upon those requests. Here's in
the grammar we'll use, already in an LL(1)
form:

Session - CommandList T_QUIT

CommandList - Command
CommmandListle

Command — Login | Get | Logout

Login — User Pass

User -~ T_USER T_IDENT

Pass - T_PASS T_IDENT

w Yk-1 A,

Get -» T_GET T_IDENT Mpore Files

More Files — T_IDENT MoreFiles | €

Logout - T_LOGOUT

Bottom-Up SDT

Here is a simple expression grammar that
has associativity and precedence already built
in.

E—>E

E - T | EAT

T—F | TMF

F— (E} | int |

A=+~

Mo*/

During the bottom-up parse, as we push
symbols on to the parse stack, we will associate
with each operand/expression symbol (E, T, F
etc.) an integer value. For each operator (A, M)
we ~will store the operator code. When
performing a reduction, we will synthesize the
attribute for the left-side nonterminal from the
attributes of the right side symbol, the handie
that is currently on top of the stack.

Q. 4. Attempt any two of the following
sections. 10x2=20

Q 4 (a2 the following
grammar :

S =5#

§—— ABC

A—-—> A/bbD

B— ale

Consider

C—>ble
D——dle

Consruct the first and follow sets for the
grammar also design LL(1) parsing table for
the grammar.

Ans.

slosy

S = ABC

A = a/bbD

Download All Btech Stuff From StudentSuvidha.com

Page 7

http://studentsuvidha.com/
http://studentsuvidha.com/

B - aft
C -+ bt
D - cft

First (51) = First (S) = First (A) = {a, b}
First (B} = {a, t]

First (C) = {b, t}
First D) ={c, t}
Follow (S) = {#, $]
Follow (A} =1{a, 4, $}
Follow (B) = {b, 4, §]
Follow (C) ={#. $}
Follow (D) ={a, 4, §)

Parsing table
a b ¢ # $
s! 'St slese
S5+ ABC S-» ABC
A A-a A -+ bbD
Bt Bt B—E
B-b
C C->b Cos C ot
D D—=E D¢ Db D—>E

Q. 4. (b) Write the quadruples, triples and indirct triples for the following expression :

x+D*y+2)+x+y+2)

Ans.(x + 4}*(y+ z}+{x + y + 2}

Quadrupies :

op argl arg? result
(0) + X 4 t,
4y + 4 z t,
2) * 4 t ty
3 +, ty z ty
(4} + ts ty tg

Download All Btech Stuff From StudentSuvidha.com

Page 8

http://studentsuvidha.com/
http://studentsuvidha.com/

triples
op argl -arg2
(10) -+ X ¥
(1) * Y z
(12) * (10 (1n
(13) + (10) z
(14) . + {12} {13)
Indirect triples |
Statements
© (10)
(1) (11)
) (12)
3} {13)
&) (14)

Q. 4. (0} Discuss the types of emrors with example which can be encountered by all the phases
of the complier.

Ans. Different types of errors in compiler phase

(1) Lexical : Lexical analyzer creates tokens. When tokens are not created it reports errors.

Ex. Consider the statement

c=a+b

The different tokens are ¢, =, 4, +, and b. If any one of the token is not created, compiler reports
erTor, :

(2) Syntax : When there is any problem regarding the construction of parse tree or any
ambiguity then compiler reports errors.

(3) Syntatic : Syntatic phase is used to check the type of variable used in any expression. If the
type of variable is not same this phase reports error.

Ex. c=a+b*50

If a, b, c are of real type then there is no error but if any are of them or all of them is an integer
then it reports error. '

{4) Intermediate Code Generator

Intermediate code generates the 3 address codes for any expression.

Ex. ¢=a + bis represented by 3 address code as

t1=a

Download All Btech Stuff From StudentSuvidha.com

Page 9

http://studentsuvidha.com/
http://studentsuvidha.com/

ty =
f3= fl + tz
l‘.‘z.‘3

H there is any problem regarding the
construction of 3 address code, it reports error.

{5} Code Optimization

Code optimization is used to reduce the
number of 3 address code generated in
Inleimediate code generation.

Ex.c=a+ bis reduced as

HH=n+b
c=t

if after the completion of this phase,
intcemediate code is not reduced then an error
is reporled. _

). 5. Write short notes on any two of the
foliowing : 10%x2=20

Q. 5. {a) Induction variable eleminaion

Ans. Induction Varable Elimination :
Some loops contain two or more (induction
variables that can be combined into “one
induction variable.

Example : The code fragment below has
three induction variabies (il, i2, and i3) that can
be replaced with one induction variable, thus
eliminating two induction variables.

int a [SIZE};

int b [SIZE];

void f (void)

{

intil, i2, i3;

for {i1 =0, i2 =0, i3 =0; i1 < SIZE; i1+ +)

a[i2++] =b [i3+ +];

retum;

]

The code fragment below shows the loop
after induction variable climination. '

int a [SIZE]; ’

int b {SIZE};
void f (void)
{

int ii;

for (i1 =0; i1 < SIZE; il+ +)
afil]j=bil];

return;

j

Induction variable-elimination can reduce
the number of additions {or subtractions) in a
loop, and improve both run-time performance
and code space.

Some architectures have auto-increment
and aulo-decrement instructions that can
sometimes be used instead of induction variable
elimination.

Q. 5. (b) DAG representation.

Ans. A directed acyclic graph, also called
a DAG, is a directed graph with no directed
cycles; that is, for any vertex v, there is no
nonempty directed path that starts and ends on
plUE2H3)

The reachability relation in a DAG forms
a partial order, and any finite partial order may
be represented by a DAG using reachibility.
DAGs may also be used to model proceses in
which
direction through a network of processors; and

information flows in a consistent
to provide space-efficient data structures for
representing sets of sequences.
DAG Construction
® Assume there are initially no nodes
and MODE (} is undefined for all
arguments.
® The 3 address statements has one of
_ three cases :
(DA=BOPC
(i) A=OPB

Download All Btech Stuff From StudentSuvidha.com

Page 10

http://studentsuvidha.com/
http://studentsuvidha.com/

{ii) A=B

Follow the following steps :

(i) If MODE (B} is undefined, create a leaf
labelled B and let MODE (B) be this node.

(ii) In case (i), determine if there is a node
tabelled OF whose left chiled is MODE (B) and
right child MODE (C) if not create such a node.
In case (ii), deterine whether there is a node
labelled OP whose lone child to MODE (B). It
not create such a node. Let n be the node or
created in both cases. In case (ii) let n be node
(B).

(iii) Append A to the list of attached
identifiers for the node n in (ii). Delete A from
the list attached identifiers for MODE (A).
Finally set MODE (A) to n.

Application of DAG

(i) Delete common sub expression.

(iiy Deterine which statements compute
values which could be used to outside the
block. '

Q. 5 (¢ Loop unrolling and Loop
jamming.

Ans. The loop
transformation is primarily intended to increase

anroll” and jam

register exploitation and decrease memory
loads and stores per operation within an
iteration of a nested loop. Improved register
usage decreases the need for main accesses and
allows better exploitation of certain machine
instructions,

Unroll and jam involves partially
unrolling one or more loeps higher in the nest
than the innermost loop, and fusing
(“jamming”) the resulting loops back together.
For untoil and jam to be effective, a loop must
be nested and must contain data references that
are temporally reused with respect to some loop
other than the innermost (temporal reuse is

described in “Data reuse”). The unroll and jam
optimization is automatically applied only te
these loops that consist strictly of a basic block.

Loop unroll and jam takes piace at + 03
and above and is not enabled by default inn the
HP compilers. To enable loop unroll and jam on
the command line, use the + Oloop_unroll _jam
option. This allows both automatic and
directive-specified unroll and jam. Specifying +0
noleop_transform disables loop unroll and fam,
loop distribution, loop interchange, [oop
blocking, loop fusion, and leop unroll.

The unrell_and_jam directive and pragma
also enables this transformation. The
no_unrell_and_jam directive and pragma is
used to. disable loop unrell and jam for an
individual loop.

Consider the following matrix multiply
loop :

DOI=1 N
DOJ=1,N
DOK=1N
ALD=ALD+BILK)*C(K]
ENDDO
ENDDO

ENDDO

Here, the compiler can exploit a
maximum of 3 registers : one for A (I, J), one for
B (I, K), and one for C (K,).

Register exploitation is vastly increased
on this loop by unrolling and jamming the [and
J loops. First, the compiler unrolls the | loop. To
simplify the illustration, an unrolling factor of 2
for I is used. This is the number of times the
contents of the loop are replicated.

The following Fortran example shows this
replication :

DOI=1N,2

Download All Btech Stuff From StudentSuvidha.com

Page 11

http://studentsuvidha.com/
http://studentsuvidha.com/

DOJ=1,N
DOK=1N
AQLN=AQLD+BLK)*CK])
ENDDO
ENDDO
DOj=1,N
DOK=1N
AJ+LD=Ad+1,)+B(+
1, K)*C (K J) o
ENDDCO
ENDDO
ENDDO

The “jam” part of unroll and jam occurs
when the loops are fused back together, to
create the following :

DOI=1,N,2
DOJj~1,N
DOK=1,N _
ALD=AQLD+B{K)*CIK])
A+1LD=A0+1+B(1+1, K)*C
(KD
ENDDO
ENDDO
ENDDO

Download All Btech Stuff From StudentSuvidha.com

Page 12

http://studentsuvidha.com/
http://studentsuvidha.com/

