
C arrays

1

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Arrays
 Arrays are defined to be a sequence/set of data

elements of the same type. Having an array, each array
element can be accessed by its position in the
sequence of the array.
♦ Decleration of the Arrays: Any array declaration

contains: the array name, the element type and the
array size.

 Examples:
 int a[20], b[3],c[7];
 float f[5], c[2];
 char m[4], n[20];

2

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Arrays
 Initialisation of an array is the process of assigning initial

values. Typically declaration and initialisation are
combined.

 Examples:
 int a[4]={1,3,5,2};
 float, b[3]={2.0, 5.5, 3.14};
 char name[4]= {‘E’,’m’,’r’,’e’};
 int c[10]={0};

3

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Example
 Write a program to calculate and print the average of

the following array of integers.
 (4, 3, 7, -1, 7, 2, 0, 4, 2, 13)
 #include<stdio.h>
 void main()
 {
 int x[10]={4,3,7,-1,7,2,0,4,2,13}, i, sum=0;
 float av;
 for(i=0,i<=size-1;i++)
 sum = sum + x[i];
 av = (float)sum/size;
 printf(“The average of the numbers=%.2f\n”, av);
 }

4

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Review of arrays

5

 There are no array variables in C – only array names
 Each name refers to a constant pointer
 Space for array elements is allocated at declaration time

 Can’t change where the array name refers to…
 but you can change the array elements,

via pointer arithmetic

int m[4]; (int [])

m

???
(int)

???
(int)

???
(int)

???
(int)

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Array names and pointer variables

6

int m[3];

int *mid = m + 1;

int *right = mid[1];

int *left = mid[-1];

int *beyond = mid[2];

(int [])

beyond

???
(int)

???
(int)

???
(int)

(int [])

(int [])

(int [])

(int [])

mid

right

left

m

subscript OK
with pointer

variable

compiler may not catch this –
runtime environment certainly won’t

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

 In C, arguments are passed “by value”
 A temporary copy of each argument is created, solely for use within

the function call
void f(int x, int *y) { … }

void g(…) {

int a = 17, b = 42;

f(a, &b);

…

}

 Pass-by-value is “safe” in that the function plays only in its
“sandbox” of temporary variables –
 can’t alter the values of variables in the callee (except via the return

value)

Array names as function arguments

7

17
(int)

42
(int)

g

b

17
(int)

x y

(int [])

f

a

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Array names as function arguments

8

 But, functions that take arrays as arguments can exhibit
what looks like “pass-by-reference” behavior, where the
array passed in by the callee does get changed
 Remember the special status of arrays in C –

They are basically just pointers.
 So arrays are indeed passed by value –

but only the pointer is copied, not the array elements!
 Note the advantage in efficiency (avoids a lot of copying)
 But – the pointer copy points to the same elements as the callee’s

array
 These elements can easily be modified via pointer manipulation

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Array names as function arguments

9

 The strcpy “string copy” function puts this “pseudo” call-
by-reference behavior to good use

void strcpy(char *buffer, char const *string);

void f(…) {

char original[4] = ″dog″;
char copy[4];

strcpy(copy, original);

}
(char [])

original

d
(char)

o
(char)

g
(char)

NUL
(char)

(char [])

copy

???
(char)

???
(char)

???
(char)

???
(char)

f

(char [])

string

(char [])

buffer

strcpy

d
(char)

o
(char)

g
(char)

NUL
(char)

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

When can array size be omitted?

10

 There are a couple of contexts in which an array
declaration need not have a size specified:
 Parameter declaration:
int strlen(char string[]);

 As we’ve seen, the elements of the array argument are not copied, so
the function doesn’t need to know how many elements there are.

 Array initialization:
int vector[] = {1, 2, 3, 4, 5};

 In this case, just enough space is allocated to fit all (five) elements of
the initializer list

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Multidimensional arrays

11

 How to interpret a declaration like:
int d[2][4];

 This is an array with two elements:
 Each element is an array of four int values

 The elements are laid out sequentially in memory, just like
a one-dimensional array
 Row-major order: the elements of the rightmost subscript are

stored contiguously

(int) (int) (int) (int) (int) (int) (int) (int)

d[0][0] d[0][1] d[0][2] d[0][3] d[1][0] d[1][1] d[1][2] d[1][3]

d[0] d[1]

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

int d[2][4];

d [1] [2]

Subscripting in a multidimensional array

12

(int) (int) (int) (int) (int) (int) (int) (int)

d[0][0] d[0][1] d[0][2] d[0][3] d[1][0] d[1][1] d[1][2] d[1][3]

d[0] d[1]

(d+1)(*(d+1)+2)

Increment by the size of
1 array of 4 ints

Then increment by the
size of 2 ints

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Why do we care about storage order?

13

 If you keep within the “paradigm” of the multidimensional
array, the order doesn’t matter…

 But if you use tricks with pointer arithmetic,
it matters a lot

 It also matters for initialization
 To initialize d like this:
 use this:
int d[2][4] = {0, 1, 2, 3, 4, 5, 6, 7};

 rather than this
int d[2][4] = {0, 4, 1, 5, 2, 6, 3, 7};

0 1 2 3

4 5 6 7

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Multidimensional arrays as parameters

14

 Only the first subscript may be left unspecified
void f(int matrix[][10]); /* OK */

void g(int (*matrix)[10]); /* OK */

void h(int matrix[][]); /* not OK */

 Why?
 Because the other sizes are needed for scaling when evaluating

subscript expressions (see slide 10)
 This points out an important drawback to C:

Arrays do not carry information about their own sizes!
If array size is needed, you must supply it somehow
(e.g., when passing an array argument, you often have to pass
an additional “array size” argument) – bummer

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

Assignment
 What is array? Write a program to multiply two matrices.

15

Download All Btech Stuff From StudentSuvidha.com

Stu
de

nt
Suv

idh
a.

co
m

http://studentsuvidha.com/
http://studentsuvidha.com/

