B.TECH. - . TCS - 302
THIRD SEMESTER EXAMINATION, 2007-2008
DATA STRUCTURE USING 'C’

Time: 3 Hours : ‘ o . Total Marks: 100

Note: Attempt all questions.

4

' Q.1. Attempt any four parts of the foltowing: ' (5%4=20)
1. (a) Show the detailed contents of the stack for given postfix expressnon to evaluate
623+-382/+%283+ :
. Ans. Given expression is ’
P;6.2,3,+,—3,8,2;/+*28 3+)notright paranthesns at end of equation

PUSH (6. 3)[PUSH (2. 5), PUSH (3. 5)
u H

:::1'>
243=3 b 6 S=|
PUSH (5.) PUSH (1. sj

STACK STACK STAC
3
‘ LH<F : 0 -
F" B2 = 4 : PUSH (2. S} =~ PUSH (3. 11—+
PUSH (4. 5) ' [t] i
3ed=T
1l pusH (.9 .
: 1¥7= 7{ PUSH (2. 5) -—2-4
ll PUSH (7.5) L1
n)n : @
: . S ——11 — N
Value = 782 + 3

‘ 782 +3
Answer: Value = 74243
‘Valiie = 17 $—>*or?
Value = 712+3=49+3
Value = 52.

. .(b) Define stack as a data structure and discuss its applications.

Ans. A stack is an ordered list in which all insertions and deletion are made at one end, called the ToP. Since
the last element fo be inserted into the stack will be the first to be required. In this way stacks referred to as .
(LIFO).

sruct stack void create stack (struct stack *S)
{ - (-

int ToP, S>> ToP=-1,

int A[20]; } ‘

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

void PUSH (struct stack *S, int value) ‘
{

S—>ToP=S > ToP+1,

S > A[S — ToP] = value

}
int PoP (struct stack *S) - .
{
int X;
X=S > A[S - ToP)
S>ToP=S>ToP-1
return (X),
) .
Application of stacks:

1. Stacks are used to pass parameters between
functions.

Stacks are used in recursion.

Expression evaluation.

Polish notation. - ‘

Stacks are used when a program uses sub-
programs. ’ =
» 1. () Writea C function to convert a valid
paranthesized infix expression to postfix
form.

Y I RN

Ans. Infix expression to postfix expression:
Suppose 6 is an arithmetic expression written in infix
notation.

Step 1. PUSH “(” onto STACK and add **)” to the
end of B.)
"Step 2, Scan 0 from left to right and reject steb 3.4,
5 and 6 for each elementof 0.
~ Step 3. If an operand is encountered, add M to P.

Step 4. If a left parenthesis “(” is encountered,
PUSH itonto STACK.

Step 5. If an operator is encountered them:

(a) Repeatedly PoP from STACK and add to P
each operator which has the same priority as or higher

periority than .

(b) Add operator (X)) to'STACK.

' Step 6. If a right parenthesis is éncountered. then

(a) Repeatedly PoP from- STACK and add to P
each operator until a left parenthesis is encountered.

(6) Remove the left parenthesis [Do not add the

"left parenthesis ToP).

Exit
void in FIX_TO_Postfix (char * source, char * target)

{
!

char *s, *;

stack * iop:

create_stack (&top),

S = souce,

t = target;

while (*s)

{
if (*s ==" *){| (*s = ="\t")) /*stop white

N ’ spaces*/
{

§++;
continue;
}
else _
ift*s =="()
{
PUSH (&toy. *s);
s+
}
else
if(*s=="))
{
while ((! 1s-empty (toy)) &&
. (peek(fog)! =(")

{
*t = PoP(&toy):
vt -
*t="": /*add one space*/
t++ : :
H

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

PoP(&toy); /*remove left parenthesis
‘ from stage
s++
}
else _
if(is digit (*s) || is alpha (*s))
| o .
*t = .
tH+;
*t=""; /*add one space */
t++
. s++;
|
else :
if(ts=="+" | *s=="-" *s=
=t S = =)
while (([! is empty (toy)) && (peek (toy)! =’)") &&

(get priority (peek (joy)) >= et priority (*s)))
i '
- *f= PoP(&top),
t++,
*t ="'
t++

/*add one space */

L]

}
PUSH(&top, *s),
st++,
}
}
while((! *s-empty (top)) && (peek (top)! =’("))
A e
*t = PoP(&top),
t++, :
*p=? ”
ot

?

/*add one space */

* =g’ /*terminate the string*/

}

int get priority (char of)
{
int pnonty,
" if(op===
priority = 1;
else
iftop=="+"lop==")
priority =
return (priority)

‘lop=="op=="%)

L (@

Write a recursive ‘C’ function for solving
towers of Hanoi problem.

nS- disk -1 . N
I 1

f{ 1

IL Jl

sp = Starting pig

[# N 4 11

- ap= Auxiliary pig ep = end pig
void move (int i, char sp, char ap, char ep)

{
ifln==1)
{ - '
printf{*\» move FROM %C to %C”, sp, ep)

}

else .

move(n- 1, ap, ep, ap),
move(l,sp,’’, ep),
move(n—1, ap,p, ep),

} -

1. (¢) Writea C function for string matching.
Ans. NaiveSearch(string s[1..n), string sub[1..m])
forifrom 1 to n-m+1
forj from 1 tom
ifs[i+j 1] 2 sub[j]
Jump to next iteration of outer loop

_return i
* . return not found
1. (/) Whatdoyou understand by best, worst and

average case analysis of an algorithm? Give
proper notations for these complexity
measures.

Ans. In computer science, best, worst and average
cases of a given algorithm express what the resource
usage is at least, at most and on average, respectively.
Usually the resource being considered is running time,
but it could also be memory or other resource.

In real-time computing, the worst-case execution
time is often of particular concern since it is important
to know how much time might be needed in the worst
case to guarantee that the algorithm would always
finish on time.

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Average pcrformance and worst-case performance
are the most used in algorithm analysis. Less widely
found is best-case performance, but it does have uses,
for example knowing the best cases of individual tasks

-can be used to improve accuracy of an overall worst-
case analysis. Computer scientists use probabilistic
analysis techniques, especially expected value, to
determine expected average running times.

Best-case performance: The term best-case per-

. formance is used in computer science to describe the
way an algorithm behaves under optimal conditions.
For example, a simple linear search on an array has a
worst-case performance O(n) (for the case where the
desired element is the last, so the algorithm has to
check every element; see Big O notation), and aver-
age running time is O(n/2) (the average position of an
element is the middle of the array), but in the best

" case the desired element is the first element in the
array and the run time is O(1).

Worst case versus average case performance:

Worst-case performance analysis and average case.

performance analysis have similarities, but usually
require different tools and approaches in practice.
Determiriing what average input means is diffi-

cult, and often that average input has properties -

which make it difficult to characterise mathematically
(consider, for instance, algorithms that are designed
to operate on strings of text). Similarly, even when'a
sensible description of a particular “average case”
(which will probably only be'applicable for some uses
of the algorithm) is possible, they tend to result in
more difficult to analyse equations.

Worst-case analysis has similar-problems, typi-

cally it is impossible to determine the exact worst-
case scenario. Instead, a scenario is considered which
is at least as bad as the worstcase.~For example, when
analysing an algorithm, it may be possible to find the
longest possible path through the algorithm (by con-
sidering maximum number of loops, for instance) even

if it is not possible to determine the exact input that

‘could generate this. Indeed, such an input may not
exist. This leads to a safe analysis (the worst case is
never underestimated), but which is pessimistic, since
no input might require this path.

When analyzing algorithms which often take a
small time to complete, but periodically require a much
larger time, amortized analysis can be used to deter-
mine the worst-case running time over a (possibly
infinite) series of operations. This amortized worst-
case cost can be much closer to the average case
cost, while still providing a guaranteed upper limit on

the running time.

Q 2, Attempt any four parts of the followmg
(5%4=20)
2. (a) Differentiate between Imear and non-linear
data structure.

Ans. Linear Data Structures: In this exhibit four
data structures are considered. Choose one of the
following:

a) Vectors

b) Linked lists

¢) Stacks

d) Queues

Non-linear Data Structures: Non-Linear
container classes represent trees and graphs. tach
node or item may be connected with two or more
other nodes or items in a non-linear arrangement.
Moreover removing one of the links could divide the
data structure into two disjoint pieces.
For example a doubly linked list has two pointers from -

“each node, however removing one of these makes
*the list into a singly linked list. While removing a

pointer from a tree destroys the shape of the tree.Not
surprisingly iterating non-linear container classes is
much more challenging than the linear ones.Consider
the following options:

(a) Binary trees - number of descendents at

most two .

(b) Any other trees

(c) Graphs
2. . (b) Define priority queue. Write a *C’ functjon

' for insertion of an element in a priority

quene,

Ans. Priority queue is an abstract data type in
computer programming, supperting the following
three operations: .

¢ add an element to thmueue with an associ-
ated priority

¢ remove the element from the queue that has
the highest priority, and return it

¢ (optionally) peek at the element with highest
priority without removing it.

A simple way to implement a priority queue data
type is to keep a list of elements, and search through
the list for the highest priority element for each

-“minimum” or “peek” operation. This implementation

takes O(1) time to insert an element, and O(n) time for
“minimum” or “peek”. There are many more efficient
implementations available. '

If a self-balancing binary search tree is used, all
three operations take O(log ») time; this is a popular

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

solution in eavironments that already provide balanced trees. The van Emde Boas tree, another associative
array data structure, can perform all three operations in O(log log ») time, but at a space cost for small queues
of about O(2™7?), where m is the number of bits in the priority value, which may be prohibitive.

Struct node - insert()
{ { .
3
_int priority; ; struct node * temp, *q;
int info; int add_item, item_priority; :
struct node * link;) -temp = (struct node*) malloc(size of (struct node))

} *ront=NULL; . pf("Input the item value to be added in the queue”);
‘ : o p.f. ("Enter priority™); scanf — _
temp--»info=added _item;
temp ->priority = item_priority

if(front ==

LR
L

'NULL Il item_priority < front > priority)

v temp - link = front;
y front =temp;

}

else

{

q = front;
white(q. » link!.= NULL&&q " link > priority

]

q

<= jtem_priority)

=g link;

temp -» link = q — link;

q-> link = temp; .

2. (¢) Writea‘C’ function for insertion operation in a circular linked list.

Ans. Insertion of big in a circular linked list:

’

il

pre hf.;ad
¢ :
,&-y -—— head
Jovale "‘;\
[N DT
R o

I&NJH . l&NII'-—-% v

! Nt

N2

N3

typed. of struct list

it *INFO,
struct list *NEXT,

}node; ' ' .
node * head = NULL *tall NULL

{

node *ptr; .
ptr=malloc (size of (node)),
ptr -> INFO = value.

ifthead ==NULL)

{
ptr->NEXT=ptr,
head=ptr,
tail =ptr,

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

else

ptr —> NEXT = head,
head = ptr, !
tail = NEXT =ptr,~

H

repair(head),

} v '
2. () Whatis asingly linked list? Explain with an example how a singly linked list can be used for sorting
aset of N numbers.

Ans. Singly-Linked Lists: The singly-linked list is the most basic of all the linked data structures. A
singly-linked list is simply a sequence of dynamically aliocated objects, each of which refers to its successor in
the list. Despite this obvious simplicity, there are myriad |mplemematlon variations. Figure shows several of
the most common stnOIy-lmked list variants. :

<a>—1+-—u+1

- (b} | head w o
| tail : : T

o
(c} | head t—w| | o | o | 3= [A= [+

sentinel

(d} | tail @ H*-{ E}Lﬁ#'

1

. Figure: Singly-linked list vqhations.
2. (¢) Whatarethe acjvaint_ages and disadvantages of doubly linked list? Also give its applications.

Ans. Advantages/Disadvantages of Doubly Linked: The primary advantage of a doubly linked list is that
given a node in the list, one cannavigate easily in either direction. This can be very useful. for example. if the
list is storing strings, where the strings are lines in a text file (e.g., a text editor). One might store the “current
line™ that the user is on with a pointer to the appropriate node; if the user moves the cursor to the next or
previous line, a single pointer operation can restore the current line to its proper value. Or, if the user moves
back 10 lines, for example, one can perform 10 pointer operations (follow the chain) to get to the right line. For
either of these operations, if the list is singly linked, one must start at the head of the hst and traverse until the
proper point is reached. This can be very inefficient for large lists.

The primary disadvantage of doubly linked lists are that{1) each node requires an extra pomter requiring
more space, and (2) the insertion or deletion of a node takes a bit longer (more pointer operations).

The primary advantage of a header node is that insertion and deletion require no special cases. The primary
disadvantage of using a header node is that it becomes unclear what the header node stores. Is it a regular list
node? Or is it a special node? If it’s a regular node, what data should it store? For a list of strings. for example.
one often wants to provide a function to return a string from a given node. If the list is empty. what is returned?
It can’t be NULL, because the functions has a return type of String, It should be a string that can’t possibly ever
actually be used.

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

2. N i Write a ‘C’ function for addition of two
polynomials using linked list
representation of polynomials.

Ans. Polynomial Addition:
typedef struct POLY

int COEF;

int EXP,
struct POLY * NEXT,

}node.
node * PADD(node *A, node *B, node *C)

[COEF[EXPINEXT

/*Polynomials A& B regenerated as singly linked
lists:are summed to form the new listnamed (x)
, “node *p, *q;
. Stepl.p=A,q=Bl|| lmtlahze p. q pointers to link list
: A & B respectively
Step 2. //Allocate free memory %pace -
¢ = create new noGi
d=C .
Step 3. Repeatstage4, 5,6 while p'=NULLand q!=NULL

Step 4. if(r » EXP==q -» EXP)
{ .

x=f— COEF +q—-» COEF

if(x!=0)

{ .
ATTACH(x, p - EXP,d)

L ‘ ’
p=p—> NEXT
.q=q -»>NEXT

1

. 1
Step 5. if (r » EXP<g—> EXP)

ATTACH(q —» COEF, g —» EXP, d)
q=q—->NEXT

} .
. Step 6. if (r - EXP>q > EXP)
{

ATTACH (p - » COEF, p - EXP, d)
p=p—>NEXT

¢

Step 7. while (p! =NULL)

//copy remaining terms of polynomials A

ATTACH (p -» COEF, p-» EXP,d)
p=p->NEXT

Step 8. wh:le (q' NULL)
//copy remaining terms of polynomlals B

ATTACH(q—~ COEF, q—>EXP.d)

q=q->NEXT

})

Step9. d—>NEXT=NULL.
t=C,
C=C=>NEXT,
free(f);

" ATTACH(C.E,d)
{
Step 1. 1= create memory attach
/fmollar (size of (node))
Step2. | > EXP=E '
Step3. | > COEF=C
Step4. d > NEXT=1 »
/fattach this node to.the end of this left
Step5. d=1 //move pointerdto the new last node

}

Q.3. Attempt any two parts of the following:

(10x2=20)
3. (a) (7)) Write an iterative ‘C’ function for
inorder traversal of a binary tree,
(i) Write the applications of tree data
structures.
Ans. () Iteration C function for in order traversal
of a Binary tree:
void.inorder (ree * root)
{ :
- do

while (root!'=NULL)

PUSH(&STACK, root)
root = root -> LEFT

}
if (!stack_empty(&STACK))
{

root = PoP (&STACK).
printf("%/", root -» INFQ),
root=root -» RIGHT,
}
jwhile (root! = NULL | 'stack_empty (&STACK))
geth().

}
: typedef struck BT
{
infINFO,
struct BT *LEFT,
struct BT &RIGHT,
|5 '

Ans. (i) Applicationé of Trees: 7
1. Trees can hold objects that are sorted by their
keys. The nodes are ordered so that all keys in

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

a node’s left subtree are less than the key of

the object at the node, and all keys in a node’s - -

right subtree are greater than the key of the
object at the node. Here is an example of a tree
of records, where each record is stored with its
integer key in a tree node: .

Node 9, mqgrdA

Node 5 r.cordn) Node: 12, recordB
/ \\ (/ g \\\
" Leat Leat Leat

Noge: 15, recordC
RN
Leat Leat

2. Here, the leaves are used as “end points™ and

hold nothing.

We call such a tree an ordered tree or a search

tree. The tree drawn above is ordered on the

integer keys saved in the nodes.

The advantages of ordered trees over sorted

arrays are:

o both,insertions (and retrievals) of objects
by key take on the average log N time, where
N is the number of objects stored.

.o the tree naturally grows to hold an arbitrary,
unlimited number of objects.

3. Trees can hold objects that are located by keys:

that are sequences. For example, we might have
some books with these Library of Congress
catalog numbers:
Trees are used to represent phrase structure
of sentences, whtch is crucial to language pro-
* cessing programs.
4. An operating system maintains a disk’s file
system as a tree, where file folders act as tree
nodes:

S. The tree structure is useful because it easily
accommodates the creation and deletion of
folders and files. '

3. (&) () Write an algorithm to count the leaf
nodes in a binary tree. ,
(i) Write short notes on height balanced
trees and weight balanced trees.
Ans. (/) Total no. of leaf nodes (recursive
approach) .
int leaf node (tree *T)

if(T==NULL)J[(T > LEFT==NULL&&T
->RIGHT=NULL))
return(l),
else \ .
return(leaf node (T —» LEFT) + (leaf
node(T --> RIGHT))),

(i) Height -baianced tree: Heighf-balancing is

_important when we wish to use a binary search tree to

implement a keyed table. The reason it is important is
that in a height-balanced tree, the ratio of the height
of the tree to the number of nodes is logarithmic.
Maintaining a logarithmic ratio ensures that the big-
O for the insert, delete, and find operations will all be
logarithmic.

Every binary tree has a height, or depth, that-de-
pends upon the height of its subtrees. Qbserve when
interacting with the corresponding visualization in
the 7'/l Try mode that you will be asked supply the
height of each of the subtrees first. In fact, you will be
prompted for the height of each node in a postorder
traversal of the tree. Another important observation
that you should make is that in this visualization, the
nodes of the trees that you will see contain no val-
ues. The property of height-balancing depends only.
upon the shape of the tree not on the contents of the
nodes.

Once you understand the concept of tree height,
proceed to balance factors, which depends upon your
understanding of height and is necessary for under-
standing height-balancing. When you are asked to
supply the balance factors, all the heights of each
subtree is provided to assist you.

Finally move to height-balanced trees. and bal-

anced and that every complete tree is a balanced tree.
Every balanced tree is a height-balanced-2 tree and
so on. As the n in height-balance-n increases the
more unbalanced the trees are allowed to be.

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Weight-balanced tree: A weight-balanced binary tree is a binary tree where the most probable item is the
root item. The left subtree consists of items less than the root items ranking, not its probability. The right sub
tree consists of items. greater. than the root items ranking.

’ 20

Example of weight balanced tree

3. (¢) () Whatisa threaded binary tree? Explain inorder threading.
(i) Explain Hash table implementation in detail.

Ans. (/) Threaded binary tree: We know that in linked prepresentation of any B.T. there are more NULL
links than actional pointers. For efficiently used we will replace certain NULL entries by spec ial pointers which
point to node higher in the tree, there special pointers called threads and BT will such pointers are called
threaded trees.

There are many way to thread a BT

1. One way inorder threading

2. Two way inorder threading

One way inorder Threader B.T.

~HRLR LA pC I

E has predecessor thread which pomt to B.

B has successor thread whith points to A.

(i) A Simple Hash Table Implementation: Hash tables are pretty cool things, and quite versatile. They
have a wide range of uses including associative arrays in perl (I am sure we all love these) and many others. |
apologize in advance for the differences in code between the article and the included files. I aiready wrote this
program and have added comments into the article to make it comprehensible, some of the code (the hash
algorithm is really nasty to read). I have tried to add the comments back into the original code, but I could have

screwed up.

To effectively use a hash table you need to know approximately how many data items you will have. This
is because if you under estimate you will get a lot of collisions (these are explamed fater in the article), and if you
over estimate you will waste.memory. You can get around this by using an array of pointers to your hash
structure as this should greatly reduce the memory used by unoccupied elements. Ahash table is an array that
has a prime number of elements. (See prime.txt for a rather large list of prime numbers) When you wish to add

Download AII Btech Stuff From StudentSuvidha.com

Inorder threading:

http://studentsuvidha.com/
http://studentsuvidha.com/

an picce of data to the hash table you need to take the key (usually characters) and turn it into a number. This
is the hash algorithm, the only really necessary requirement is that the hash algorithm will always produce the
same results for the same key. It is also desirable to-distribute the results fot different keys nicely. You then .
modulus the number produced by the hash algorithim by the number of elements in the hash table. Then you

put the data in that element of the array.
Unsigned int hash (char *s); // Starts on line #9 of hash.c
unsigned'vint hash (char *s) {
inti, n; // Our temporary variables
unsigned int hashval;
unsigned int ival;
char *p:’ .
p =~ (char *) &ival: o /I p lets us reference the integer value as a
’ /{ character array instead of an integer. This
/! is actually pretty bad-style even though it
{/ works. You should try.a.union if you know
// how to use them. '
hashval = ival = 0; ' // Initialize our variables
- 4 Figure out how many characters are in an integer the correct answer is 4
/1 (on an 1386), but this should be more cross platform.
n = (((log10((double)(UINT_MAX))/ log10(2.0)))/ CHAR BIT)+0.5;
/I loop through s four characters at a time
for(i =0: 1 <strlen(s); i +=n) {
// voodoo to put the string in an integer don’t try and use strcpy, it
¢/ is a very bad idea and you will'corrupt something. ’
stracpy(p. s +i.n): -
// accumulate our values in hashval
~ hashval += ival;
3 , .
/7 divide by the number of elements and return our remainder
return hashval % HASHELEMENTS;

1
[

[fwe could just shove the data in the array it would be pretty simple. but what if there are two keys that hash
to the same value? This is a collision, and slows down our lookup. A good hash algorithm won’t have many
of these. but the are inevitable. In this case I-have implemented a |inked list.

I hope this has been useful to you, have fun hashing.

e Makefile
. hash.h
e hash.c

s gerche

. gettoken.c

) main.c

prime txt) :
Q.4. Attempt any two parts of the following: ‘ .(10x2=20)
4. (a) (i) Write a non-recursive algorithm for quick sort. .

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

(i)) Derive the time complexity of Merge
sort in average case.
Ans. (i)
#include <stdio.h>
#include <conio.h>
#define MAXELT 100
#define INFINITY 32760
// numbers in list should not exceed
/F this. Change the value to suit your
// needs
#define SMALLSIZE 10
#define STACKSIZE 100
// should be ce|l|n°(I0(MAXSlZE)+ 1)

// not less than 3

intlistf MAXELT+1];
- // one extra, to hold INFINITY
struct { // stack element.
int a,b;
} stack[STACKSIZE];
int top=-1; // initialise stack
int main() // overhead!
{
inti=-1,j,n;
chart[10);
void quicksort(int);
do {
if(i!=-1)
list{i++]=n;
else
i+

kd

printf(“Enter the numbcrs <End by #>: %):
flush(stdin); .
scanf(*%[™\n]”,t):
if (scanf{t.”%a" . &n)<1)
break;
} while (1);
quicksort(i-1);
printf(*\nThe list obtained is “); .
for (j=0;j<i;j++) :
printf(*\n %d™ list[j});
printf{*\n\nProgram over.”);
getch();

reum 0; // successful termination.

-t

void interchang,e(im *x.int *vy -
{
int temp:
temp=*x;
*x=ty;
*y=temp;
H v
void split(int first,int last.int *splitpoint)
{ .
INEX,1,1.8.2;
// here, atleast three elements are neededk
|f(llst[f'rst]<llst[(frst+last)/”]) { /7 find median
s=first:
g=(first+last)/2:
h
else {
g=first;
s=(first+lasf)/2:
. ‘
if (list[last]<=list[s])
X=$;
elsé if (list[last}<=list{g])
x=last:
else
X=g;
interchange(&list[x], &Ilst[f' irst]);
split-point element

Il swap

// swap the

/! with the first
x=list[first];

i=first+1: /! initialise
j=last+1;
while (i<j) §
do { // find
= ‘
} while (list[j]>x):
do {
i++; /lfind i
} while (list[i}<x):
interchange(&list[i).&list[j]): // swap
)
! .
interchange(&list[i],&list[j1);

/! undo the
extra swap .

interchange(& list{ first],&list[j]):

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

/{ bring the split-point
// element to the first

*splitpoint=
}

{
top++;
stack{top}.a=a;
stack{top].b=b;
} .
void pop(int *a,int *b)
{ N
*a=stack[top].a;
*b=stack[top].b;
top—;
H
" void insertion_sort(int first,int last)
{
int i,j.c;
for (i=firstii<=last;i++){
j=listli];
c=i;
while ((list{c-11>))&&(c>first)) {
list[c]=list[c-1];
&—;
} .
list{c}=y;
)
}
void quicksort(int i)

§
1

int first,last,splitpoint;

push(0,n);
- while (top!=-1) {
pop{&first.&last);
for (1) {

if (last- frst>SMALLSIZE) {
/7 find the larger sub-list
split(figst, last,&splitpoint).
// push the smaller fist

if (last-splitpoint<splitpoint-first) {

push(first,splitpoint-1);
first=splitpoint-+1;

“void push(int a,iﬁt b) // push

)
else { .
push(splitpoint+1 last);
last=splitpoint-1;
}
}
clse { // sort the smaller sub-lists
// through insertion sort
insertion_sort(first,last);
break;

H
} ,
} /{ iterate for larger list

(ify Complexity of Mergesort: Mergesort is a .
divide and conquer algorithm, as outlined below. Note
that the function mergesort calls itself recursively.
Let us try-to determme the time complexity of this
algoritbm.

list mergesort (list L, int n);

{
if(n==1)
return (L)
else {

Split L info two halves L, and L, ;
return (merge (mergesort (L n/2).
(mergesort (L, n/2))
H

%

I} .

Let T(n) be the running time of Mergesort on an
input list of size n. Then,

Tm < C (ifn=1) (C isa constant)

2T -~ + Cq
< (2) N

—_— cost of merging i, > 7
two recursive calls

If n = 2* for some Kk, it can be shown that
M) <2'T(N) + C 24

That is, T{(n) is O(nlog n).

} .

4. (b) (D Write a *C’ function for insertion sort.
Give the worst case time complexity for
insertion sort,

(i) Explain two way merge sort.
Ans (/) Insertion sort:

void insertion (INT A[], intN)

{

1

int temp, ptr, k,
afo]=- 1000, '
for (k=1,k<=N, K++)

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

//k is the press number

“temp = Ak}
prr=k-1:
while(temp <Alptr]) //Shifting

“Alptr+ 1] =Alptr],
ptr=ptr—1,
Afptr+1]=temp //Insertion

R

} .
Worst case complexity for-insertion sort
algorithm:

A]
Ry = 2k
k=1
(max. no. of comparison in each pass)
=]1+2+3+..N
1
- Noxiew-n.a> X +D
2 2
N N A ,
E s -
2 2
Therefore
= oM.
(i) Two-way merge sort:

Definition: A k-way merge sort that sorts adata
stream using repeated merger. It distributes the input
into two streams by repeatedly reading @ block of

input that fits in memory, a run, sorting it, then writing

it to the next stream. It merges runs_from the two
streams into an output stream.-It then repeatedly
distributes the runs in the output stream to the two
streams and merges them until there is a single sorted
output.
4. (O Derwecomplexlty of search operatlon
‘ in an AVLtree.
(i)) Write a short note on B tree.

Ans. (/) A non-specialized sequence container
- that performed better than O(N) in both kinds of
operation would be a great advance, even if it
performed worse than vector on random access, and
worse than list on insert/erase. The sequence
container avl_array, proposed here, has precisely
these properties. It provides O(log N) random access
and O(log N) insertion/removal. By using it, the
aforementioned algorithm would have its time
complexnty lowered down to O(N-log N).

As in list in avl_array every element is linked to

its two sequence neighbors.

NEXE——> ceeermereienrnnns next—>
A B F G
*—“"pl Y crreeveveesanaas <____p rev

Additionally, every element is linked to three

. elements more. These links are employed to build a

tree structure:
D
F\
B F
JANVAY
A CE G,
The topmost element is called the root of the tree.
Trees are self-similar structures. That is, every node

. is the root of'a subtree that contains the nodes placed

under it. In every node.-a variable stores the rank of
the node in its subtree (starting with 0). These kind of

. trees are called rank trees or grder statistic trees.

D3w -
A
B.l F,1
/A Y A

A0 CO0 EO0 GO

This rank variable is employed for reaching the
n’th element by descending from the root and taking
every time the left branch (if n<rank) or the right branch
(if n>rank). Before taking a right branch, n must be
adjusted by subtracting the current rank from it. The
time complexity of this random access operation is
O(log N), regarded that the tree is balanced. Main-
taining balance and ranks make insert/erase -
operations O(log N) too.

That said, it must be clarified that the current
implementation of avl array doesn’t store the
rank of every node, but the count of nodes in its

subtree (including both branches and the node |tse|f)

D,7
/N R
" B3 F3
/Y A
Al C1 E]l G}

The rank of a node is found in the count field of

- the root of its left subtree (if there’s no left subtree,

then the rank is 0). The total size of the treé is the
root’s count. On insertion/removal the count fields in
the path to the root must be updated, which requires
adding (unconditionally) left-and right counts of every

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

node (only the nodes in the way up to the root need -

to be updated).

The underlying tree structure is never exposed to
the user. It is only employed for providing logarith-
mic time random access, and it doesn’t represent any
meaningful hierarchy relationship within elements.

(if) B tree: In computer science, a B-tree is a
tree data structure that keeps data sorted and allows
searches, insertions, and deletions in logarithmic
amortized time. It is most commonly used in databases
and filesystems.

In B-trees, internal nodes can have a variable num-
ber of child nodes within some pre-defined range.
When data is inserted or removed from a node, its
number of child nodes changes. In order to maintain
the pre-defined range, internal nodes may be joined
or split. Because a range of child nodes is permitted,
B-trees do not need re-balancing as frequently as
other self-balancing search trees, bpt may waste some
space, since nodes are not entirely full. The lower
and upper bounds on the number of child nodes are

typically fixed for a particular implementation. For ex- .

ample, in a 2-3 B-tree (often simply referred to as a 2-
3 tree), each internal node may have only 2 or 3 child
nodes.

A B-tree is kept balanced by requmng that all leaf
nodes are at the same depth. This depth will increase
slowly as elements are added to the tree, but an. in-
crease in the overall depth is infrequent, and results
in all leaf nodes being one more hop further removed
from the root.

B-trees have substantial advantages over alter-
native implementations when node access times far
exceed access times within nodes. This usually oc-
curs when most nodes are in secondary storage such
as hard drives. By maximizing the number of child
nodes within each internal node, the height of the
tree decreases; balancing occurs less often, and effi-
ciency increases. Usually this value is set such that
each node takes up‘a full disk block or an analogous
size in secondary storage. While 2-3 B-trees might be
useful in main memory, and are certainly easier to
explain, if the node sizes are tuned to the size of a disk
block, the result might be a 129-513 B-tree.

A B-Tree of order m (the number of keys in each
node) is a tree which satisfies the following proper-
ties : .

!. Every node has <= m children.

.2. Every node (except root and leaves) has >=m/
2 chlldren

3. The root has at least 2 chlldren

4. All leaves appear in the same level, and carry no
mformation.

A non-leaf node with k children contains k - |
keys
Q. 5. Attempt any two parts of the following:

(10x2=20)
5. (a)(@ Prove the correctness of Kruskal’s
algorithm for minimum spanning tree.
(i)) Define Graph, multigraph and weighted

_ matrix.

Ans. (i) Proof of correctness: Let P be a
connected, weighted graph and let Y be the subgraph
of P produced by the algorithm. ¥ cannot have a cycle,
since the last edge added.to that cycle would have -
been within one subtree and not between two different
trees. Y cannot be disconnected, since the first
encountered edge that joins two components of Y
would have been added by the algorithm. Thus, Yisa
spanning tree of P, -

it remains to'show that the spanning tree Y is
minimal:

Let ¥, be aminimum spanmngtree IfY=Y, thenY
is-a minimum spanning tree. Otherwise, let e 'be the
first edge considered by the algorithm that is in ¥ but
not in Y. has a cycle, because you cannot add an
edge to a spanning tree and still have a tree. This
cycle contains another edge f which at the stage of
the algorithm where e is added to ¥, has not been
considered. This is because otherwise e would not
connect different trees but two branches of the same
tree. Then is also a spanning tree. Its total weight is
less than or equal to the total weight of Y. This is

- because the algorijthm visits e before fand therefore .

If the welghts are equal we consider the next edge e
which is'in Y'but not in Y. If there is no edge left, the
weight of ¥ is equal to the weightof ¥, although they
consist of a different edge setand Y is alsoa minimum
spanning tree. In the case where the weight of Yyis
less than the weight of ¥, we can conclude that Y is
not a minimum spannmg tree, and the assumptlon
that there exist edges e,/ with w(e) <w(f) is incorrect.
And therefore Y is a minimum spanning tree (equal to
¥, or with a different edge set. but with same weight).
(i) Graph A set of items connected by edges.

. Each item is called a vertex or pode. Formally, a graph

is a set of vertices and a binary relation between
vertices, adjacency. .

Multi graph (MultiGraph)

The Class of multigraphs. A multlgraph isa
Graph containing af least one pair of GraphNodes
that are connected by more than one GraphArc.

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Weight Matrix Definition
o A weight matrix for a pattern of length n is
defined as a matrix of numbers W,_ where i is
in{l,2...nlandxisin {A,7.GC} for dna.
e The score of the string x,...x, is given by:
W, At Wt v W

5. B Wnte a short note on DFS traversalof
agraph.

(i) Explain the Dijkstra’s algorithm for
shortest path in a graph with suitable
example.

Ans. (i) Depth-first search (DFS) is an algorithm
for traversing or searching a tree, tree structure, or
graph. Intuitively, one starts at the root (selecting
some node as the root in the graph case) and explores
as far as possible along each branch before
backtracking.

Formally, DFS is an uninformed search that
progresses by expanding the first child node of the
search tree that appears and thus going deeper and
deeper until a goal node is found, or until it hits a
node that has no children. Then the search backtracks,
_ returning to the most recent node it hadn’t finished
exploring. In a non-recursive implementation, all
freshly expanded nodes are added to a LIFQ stack for
exploration.

Space complexity of DFS is much Iower than BFS
(breadth-first search). It also lends itself much better
to heuristic methods of choosing a likely-looking
branch. Time complexity of both aigorithms are
proportional to the number of vertices plus the
number of edges in the graphs they traverse (O(]V} +
IED)- ,

When searching large graphs that cannot be fully
contained in memory, DFS suffers from non-
termination when the length of a path in the search
tree is infinite. The simple solution of “remember which
nodes I have already seen” doesn’t always work
because thgre can be insufficient memory. This can
be solved by maintaining an increasing limit on the
depth of the tree, which is called iterative deepening
depth-first search. _

~ A depth-first search starting at A, assuming that
the left edges in the shown graph are chosen before

right edges, and assuming the search remembers
previously-visited nodes and -will rot repeat them
(since this is a small graph), will visit the nodes in the
following order: A, B, D,F.E.C.G
Performing the same search without remembering
previously visited nodes results in visiting nades in
theorderAB:D,F.E.A, B.D.F.E.etc. forever. caught
inthe A, B, D, F. E cycle and never reaching Cor G,
lterative deepening prevents this -loop and will
reach the following nodes on the following depths. -
assuming it proceeds left-to-right as above:
e 0:A
e l:A(repeated).B.C.E
(Note that iterative deepening has now seen
C. when a conventionab.depth-first scarch
did not.)
e 2:A,B.D.EC,GE.F :
(Note that it still sees C, but that it came later.
Also note that it sees E via a different path,
and foops back to F twice.)
*3:A,B.D,F.E,.C.GE.F.B
' _For this graph, as more depth is added, the two
cycles “ABFE” and “AEFB™ will simply get longer
before the algorithm gives up and tries another branch.
(ii) Operation of Dijksha’s Algovithm: Graph

. n

©

Choose the closest node to (5) relax all nodes
adjacent to S under predessor for all nodes updates

ann (10, ~)
i

©

r®

min {5, ea)

Choose in closely node X relax all nodes ad;aceble
in update predessors far u, v. & y.

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

B-Tree: 1. At least N/2 and max. 7 nodes empty
children (order in) '
2. Al leaf node must be at same level.
3. All leaf node contain max n— I keys.
5. (c)() Writea ‘C’ function for traversing a
multiway search tree.
(i) Write about deletlon ofanodeinaB
: tree.
Ans. (i) Multi way search: Recordptr
*searchkey(node *root, int skey)

int i; /
iflroot==NULL)
© return NULL;
else
{ 0
while((i<6) && (skey> root->key(i}))
i+
if{(i<6) && (skey==rroot->key[i]))

return root->recptr{il;
else if (i<6)

return searchkey(root->nodeptr{i], skey)
else

return searchkey(root->nodeptr{i], skey)

1

(i) Deletion From a B-Tree:

o [fthe entry to be deleted is not in a leaf, swap
it with its successor (or predecessor) under
the natural order of the keys. Then delete the
entry from the leaf.

o Ifleafcontains more than the minimum number
of entries, then one can be deleted with no
further action.

e Otherwise... _

o if the node contains the minimum number of
entries, consider the two immediate siblings of
the node: .

e If one of these siblings has more than the
minimum number of entries, then redistribute
one entry from this sibling to the parent node.
and one entry from the parent to the deficient
node.

Deletion From a B-Tree (pseudo code)

e if (the entry to remove is not in a leaf) then
swap it with its successor;

® currentNode = leaf’,

. while (currentNode underflow)

try to redistribute entries from an immediate snblmg
into currentNode via the parent node;

if (impossible) then merge currentNode with a

sibling and one entry from parent;

currentNode := parent of currentNode;

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

