. BTECH.
THIRD SEMESTER EXAMINATION 2009-10 '

DATA STRUCTURES USING ‘C’

ECS-302

Time : 3 Hours

‘Note: Attempt all questions.
Q.1. (a) Explain the different ways of analysing
-algorithm.
Ans. To analyze an algorithm is to determine

the amount of resources (such as time and
. storage) necessary to execute it. Most algorithms

are designed to work with inputs of arbitrary

length. Usually the efficiency or complexity of

an algorithm is stated as a function relating the -

input length to the number of steps (time
complexity) or storage locations (space
complexity).

Algorithm analysis is an important part of a
broader computational complexity theory, which
provides theoretical estimates for the resources
needed by any algorithm which solves a given
computational problem. These estimates provide
an insight into reasonable directions of search
for efficient algorithms.

In theoretical analysis of algorithms it is com-
mon to estimate their complexity in the asymp-

totic sense, i.e., to estimate the complexity func-

tion for arbitrarily large input. Big O notation,
. omega notation arid theta notation are used to
this end. For instance, binary search is said to
run in a number of steps proportional to the loga-
rithm of the length of the list being searched, or
in O(log(n)), colloquially “in logarithmic time”.
Usually asymptotic estimates are used because
" different implementations of the same algorithm
may differ in efficiency. However the efficiencies
of any two “reasonable” implementations of a
given algorithm are related by a constant multi-
plicative factor called a hidden constant.

- Exact (not asymptotic) measures of efficiency

can sometimes be computed but they usually

Total Marks : 100

require certain assumptions concerning the par-
ticular implementation of the algorithm, called
model of computation. A model of computation

~ may be defined in terms of an abstract computer,

e.g., Turing machine, and/or by postulating that
certain operations are executed in unit time. For
example, if the sorted-list to which we apply bi-
nary search has » elements, and we can guaran-
tee that each lookup of an element in the list can
be done in unit time, then at most log,n+1time
units are needed to return an answer.

Time efficiency estimates depend on what
we define to be a step. For the analysis to
correspond usefully: to the actual execution time,
the time required to perform a step must be
guaranteed to be bounded above by a constant.
One must be careful here; for instance, some.
analyses count an addition of two numbers as
one step. This assumption may not be warranted
in certain contexts. For example, if the numbers
involved in a computation may be arbitrarily large,
the time required by a single addition can no

- longer be assumed to be constant.

Q.1.(b) Write an efficient algorithm to find the
kth element in a sequence of n clements.
Ans. Traversal of 1D array
for(i=0ii<=n;i++)
if{i==k)
printf{(*\n %d” a[i]);
Q-1.(c) Write an algorithm which obtains the
transpose of nxn sequence matrix onto itself.
Ans. Algorithm for transpose of matrix -
' for(i=0;i<n;i++)
for(=0g<nj++)
=afilii}; .
afilljl=ali}i};
afilliFs

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Q.1.(d) Write the transvering algorithm for a
linear array. - _ .

Ans. for(i=0;i<n;i++)

printf{(“\n %d”,a[i]);

Algorithm:

1. Repéat step 1 fori=1 ton

2. print afi}.

Q.1.(e) Write an algorithm and a C function to
. reverse a single linked list.
Ans. Reverse a Linked List
void reverse (struct node **kbr)
{ . :
struct node *tenmp, *p, *q;
temp=*kbr;
p=temp->next;
g=temp;
while (p!=NULL)
. { . .
temp=p; :
p=p->next;
temp->next=q;
| g=temp;
} , _
(*kbr) ->next=NULL;
*kbr=q;

} .

Q.1.(f) Whatis double linked list? What are the
advantage and disadvantageof double linked
list? _

Ans. Doubly Linked List : In computer
science, a doubly-linked list is a linked data
structure that consists of a set of data records,
each having two special link fields that contain
_ references to the previous and to the next record
in the sequence. It can be viewed as two singly-
linked lists formed from the same data items, in
two opposite orders.

[Xte [z s [oo] o J37] o>

A doubly-linked list whose nodes contain -

three fields: an integer value, the link to the next
node, and the link to the previous node.

The two links allow walking along the list in
either direction with equal ease. Compared to a
singly-linked list, modifying a doubly-linked list
usually requires changing more pointers, but is
sometimes simpler because there is no need to
keep track of the address of the previous node.

Advantages: Two pointers forward and
backward

" Disadvantage:
e Require extra memory
_ e ‘Require more time in insertion and, deletlon :
Q.2. Attempt any four parts: (5%4=20)

Q.2.(a) Write deletion algorithm for a steak.
What is its complexity?

Ans. Algorithm For POP operation in stack

Pop(s):

1. if stack is empty then report underflow
2. item=stack{[top];

3. top=top - 1;

4.end

Complexity is 0(1)

Q.2.(b) Write an efficient algorithm which

converts in-fix expressions into post fix

expression.
- Ans. Infix to postfix conversion

e Scanthe Infix string from left to right.

o - Initialise an empty stack.

e If'the scanned character is an operand,
add it to the Postfix string. If the
scanned character is an operator and if
the stack is empty, push the character to
stack.
¢ If the scanned character is an

Operand and the stack is not empty,
compare the precedence of the
. character with the element on top
of the stack (topStack). If topStack
has higher precedence over the-
scanned character Pop the stack
else Push the scanned character to
stack. Repeat this step as long as
stack is not empty and topStack
has precedence over the character.

Repeat this step till all the characters are

scanned. -

s (Afier all characters are scanned, we
have to add any character that the stack
‘may have to the Postfix string.) If stack
is not empty add topStack to Postfix
string and Pop the stack. Repeat this
step as long as stack is not empty.

. Return the Postfix string.

Download AII Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

struct node *temp ;
temp =(struct node *) malioc (
slzeof(struct node)); -

Q-2.(d) Write a C program to implement a queue
using linked list.
Ans. /* Program that implements queue asa

linked ist. */

#include <stdio.h>
#include <conlo.h>
struct node

intdata;

struct node *link ;
}: :
struct queve

struct node *front:
struct node *rear;

¥

volid inflqueve (struct queuve *);
void addq (struct queve *,int);
int delq (struct queuve *);
void delqueuve (struct queve *);
“void main() .
{.
struct queve a;
inti;
clrscr() ;
inilqueve (&a);
addq (&a, 11);
addq(.&a, -8):
addg (&a, 23);
addq(&a,1?);
addq (&a, 15):
‘addq(&a,18):
addq (&a,28);
i=delq(2a);
printf (“\nltem extracted: %d",i);
i=delq(&a);
prinif (“\nliem exirac'ed Z%d”, 1);
i=delq(&a);
printf (“\nltem extracted: %d",1):
delqueve (&a); g
getch();

}

/* initialises data member */
void inltqueue (struct queue *q)

q->front=q->rear=NULL;

/* adds an element to the queue */
void addq (struct queuve *q, Iint tem)

e

i (temp == NULL)
printf { “\nQueue is full. '“)
temp ->data=item; .
temp ->link=NULL; -
if(q->front==NULL)
{
q->rear=q->front=temp;
return;

}

q->rear->link=temp;
q->rear=q->rear ->link;

}

v /*removes an element from the queue */

int delq (struct queve * q)
{

struct node Hemp ;
intitem;

it (q -> front == NULL) ’ .

printf (“\nQueve is emply.”);
return NULL ;
}

item='q ->tront ->data;
temp=q->front;

q->front = q -> front -> link ;
free (temp); :
return item;

}

/* dedllocates memory */
void delqueve (struct queue *q)
{

struct node *temp ;

it (q -> front == NULL)
return;

" while (q -> front 1= NULL)

{ -
temp=q->front;
q ->front = q -> front -> link ;
free (temp);

'}}

Q.2.(e) Give short notes one:

(1) Dequeue .

_(ii) Priority Queues.

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Ans. In computer science, a double-ended
queue (often abbreviated to deque, pronounced
deck) is an abstract data structure that
implements a queue for which elements can only
be added to or removed from the front (head) or
back (tail). It is also often called a head-tail linked
list.

Distinctions and sub-types: This differs ﬁum
the queue abstract data type or First-In-First-
Out List (FIFO), where elements can only be
added to one end and removed from the other.
This general data class has some possible sub-
types: -

e An input-restricted deque is one where

deletion can be made from both ends, but

input can only be made at one end..

e An output-restricted deque .is one where

input can be made at both ends, but output
can be made from one end only.
Both the basic and most common list types in
computing, queues and stacks can be considered
specializations of dequgs, and can be
implemented using deques.)
 Priority queue

Priority quene is an abstract data type in computer

programming that supports the following three
- operations:

InsertWithPriority: Add an elcmentto the queue.

with an associated priority

e Ge{Next: Remove the element from the queue
that has the highest priority, and return it
(also known as “PopElement(Oft)” or
““GetMinimum”)

o PeekAtNext (optional): Look at the element

with highest priority without removing it.
Effect of different data structures

The designer of the priority queue should
take into account what sort of access pattern the
priority queue will be subject to, and what
computational resources are most ilportant to
the designer. The designer can then use various
specialized types of heaps. .-

There are a number of specialized heap data

structures- that either supply additional

| operations or outperform the above approaches.

The binary heap uses O(log #) time for both
operations, but allows peeking at the element of
highest priority without removing it in constant
time. Binomial heaps add several more operations,
but require O(log #) time for peeking. Fibonacci -

" heaps can insert elements, peek at the maximum

priority element, and increase an element’s priority
in amortized constant time (deletlons are still
O(log n)). .

While relying on a heap is a common way to
implement priority queues, for integer data faster
implementations exist (this can even apply to
datatypes that have finite range, such as floats):

e When the set ofkeys is {1, 2, ...,C}, a

data structure by van Emde Boas sup-
ports the minimum, maximum, insert,
delete, search, extract-min, extract-
max, predecessor and successor opera-
tions in O(loglogC) time, but has a space
cost for small queues of about O(2"?),
where g is the number of bits in the
priority value.

An algorithm by Fredman and Willard imple-

“ments the minimum operation in O(1) time and

insert and extract-min operations in
0(4 l°g n)l.ime .

For applications that do many “peek”
operations for every “extract-min” operation, the
time complexity for peek can be reduced to O(1)
in all tree and heap implementations by caching
the highest priority element after every insertion
and removal. (For insertion this adds at most
constant cost, since the newly inserted element
need only be compared to the previously cached
minimum element. For deletion, thisatmost adds
an additional “peek” cost, which is nearly always
cheaper than the deletion cost, so overall time
complexity is not affected by this change. '

'Q.2.() What is recurrsione? Write a C pro-

gram to solve Tower of Hanoi problem.

Ans. Recursion is a techmque in which a
function calls itself.

In this there exists a base criteria. Also in ev-
ery step call should be closer to the base criteria.

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

- Program for tower of Hanol: ' Step3
#include<sidio.h> '
#include<conio.h> o
‘Void hanoi{int n, chor. beg,char aux,

: - char end)
~ {if(n==1) e

Printf(“\n move disk from %c to
%c,beg.end);.
else :
hanoi{n-1;beg,end ,aux);
hanoi(1,beg,aux.end);
hanol(n-1,aux,beg,end);

3/0!d ‘main() O W

{intn; o Final binary tree

charab.c; ‘ . (@) (i) Write an algorithm to convert a forest in

printf(*\n enter no of disks™); " toa binary tree.

;C""f("%db'&“'): _Ans. Forest : Forest is defined as a set of
anoi(n.a,b,c); trees . it should be clear that right child of

}geich(): L v equivalent binary tree will always be null. A root

Q.3. Attempt any two parts: (2x10=20)
(a)(i) If the in-order traversal of a binary treeis
B,I,D,A,C,G E, H, Fand its port-crder traversal
isI,D, B, G, C,H, F, F, A. Determine the binary
tree.

.does not have a sibling.

When a forest is transformed into a binary

tree, root will have a right child. Right child of the
root willbe nexttree ina forest eg: forest with 3 trees.

Ans. Given Inorder:B,1,D,A,C,GE,H,F
Postorder: 1,D,B,GC,HFEA
Creation of binary tree;

Stepl

Each tree in forest is converted into a binary
tree using leftmost child right sibling relation

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Each tree of forest is represented by its
~ corresponding binary tree .
These three trees can be combined by
1. tree with root node E is node the right child
of node A ’ :
2. Tree with root node 1 is the node right child
of node E

O O

(b) What is a binary search tree? Write a C

program to insert new notes fo a binary search

tree and delete a given node from a binary search

tree.) . .
Ans. Binary search tree: Binary Search tree

is a binary tree in which each internal node x

stores an element such that the element stored in

the left subtree of x are less than or equal to x

and elements stored in the right subtree of x are

greater than or equal tox. This is called binary-

search-tree property. -

" "insertion and Deletion in Binary.

Search Tree*/-

#include<conio.h>

#include<stdio.h>

#include<stdlib.h>

struct node

{

int info;

struct node *ichild;

struct node *rchild;

¥'root;

main() -
{

" int choice,num;

root=NULL;

while(1)

{

printf("\n”);
printf(*1.Insert\n");

printf(“2. Delete\n”);
printf(“6.Display\n”),
printf(“7.Quit\n"); .
printf(“Enter your choice : “);
scanf(“%d”,&choice);
switch(choice)

{

case 1:

. printf(*Enter the number to be inserted : “);

scanf(*%d",&num);

insert(num);

break;

case 2:

printf(*Enter the number to be deleted : “);
scanf(*%d”,&num), -
del(num);

break;

case 6: N
display(root,1); '

~ break;

case 7:
exit(); . -
default;

printf(“Wrong choice\n™);

Y*End of switch */
Y*End of while
}*End of main()*/

find(int item,struct node **par,struct node
ﬁloc) '

{ ,

struct node *ptr,*ptrsave;

if(root==NULL) /*tree empty*/

{

*loc=NULL;

*pa}=NULL;

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

retum;

v}

if(item==root->info) /*item is at root*/
{.

*loc=root;

*par=NULL;

return;

}

“I*Initialize ptr and ptrsave®*/
if{iteminfo) :
ptr=root->ichild;

‘else .
ptr=root->rchild;

ptrsave=root;

while(ptri=NULL)

{

if(item==ptr->info)
{ *loc=ptr;

*par=ptrsave;

return;

} _

ptrsave=ptr;

if(iteminfo) '
ptr=ptr->ichild;
_else ’
ptr=ptr->rchild;

}*End of while */
*loc=NULL; /*item not found*/
*par=ptrsave;)
}*End of ﬁnd()*/

insert(int ltem)

{ struct node *tmp,*parent, *locauon
find(item,&parent,&location),
if(location!=NULL)

{ S

printf(“Item already present’);
“retum;

-}

tmp=(struct node *)malloc(sizeof(struct- -
node)); .
tmp->info=item;
tmp->ichild=NULL,;

tmp->rchild=NULL,;

. if(parent==NULL)

root=tmp;

else

ifiteminfo) ‘
parent->Ichild=tmp;

else

parent->rchild=tmp;
Y*End of insert()*/

del(intitem)

{

struct node *parent,*location;

if(root==NULL)
{ .
printf(*Tree empty”);
retum; -

}

ﬁnd(item.&parent,&locaiion);
if(location==NULL)

{

printf(*item not present in tree”);
retum; :
} o ' _
if(location->Ichild==NULL && location-
>rchild==NULL), '
case_a(parent,location);

" if(location->Ichild!=NULL && Iocatlon-

>rchild==NULL) _
case_b(parent,location),
if(location->Ichild==NULL && location-
>rehild!=NULL) '
case_b(parent,location);
if(focation->Ichild!=NULL && locatxon—
>rch|Id'-NULL) -

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

case_c(parent,location); |

free(location); -

}Y*End of del()*/

case_a(struct node *par,struct node *loc)

{

node™/

root=NULL;

else

if(loc==par->ichild)

par->ichild=NULL,;

else

par->rchild=NULL;

}Y*End of case_a()*/
{

struct nade *child;

- Mnitialize child*/

|f(loc->lch|ld' NULL) /*item to be deleted
has Ichild */
child=loc->Ichild;

" else /*item to be deleted has rchild */
child=loc->rchild; " '
if(par==NULL) /*Item to be deleted is root
node*
root=child;
else :

if(loc= par->lchsld) I*item is Ichild of its

parent*/

par->Ichild=child;

else /*item is rchild of its parent*/

par->rchild=child;

Y*End of case_b()*/ -

. case_c(struct node *par, struct node *loc)

{ | -

struct node *ptr,*ptrsave, *suc, *parsuc;

{*Find inorder successor and its parent*/

ptrsave=loc;

ptr=loc->rchild;

while(ptr->ichild!=NULL)

{ .

if(par==NULL) /*item to be deleted is root

case_b(struct node par struct node *Ioc)

ptrsave=ptr;
ptr=ptr->ichiid;
}

suc=ptr;

‘parsuc=ptrsave;

if(suc->Ichild==NULL && suc-
>rchild==NULL)
case_a(parsuc,suc);

else

case_b(parsuc, suc)
if(par==NULL) /*if item to be deleted is root
node */

root=suc;

else

if(loc==par->Ichild).
par->Ichild=suc;

else

par->rchild=suc;
suc->Ichild=loc->Ichild;
suc->rchild=loc->rchild;
}*End of case_c()*/

display(struct node *ptr,int level)
{ .
inti;
if (ptri=NULL)
{ .
display(ptr->rchild, level+1):
printf(“\n™);
for (i = 0; i < level; i++)
printf(* *),
printf(“%d”, ptr->info);
display(ptr->ichild, level+1);
Y*End of if*/ '
YEnd of display()*/
(c) Write short notes one:

(i) Height balance tree

(ii) Thread binary tree

Ans. (i) Height Balance Tree A height

balance tree is also known as AVL tree

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

* AVLtree definition: a binary search tree in which the maximum difference in the height of any
node’s right and left sub-trees is 1 (called the balance factor) balance factor = helght(leﬁ) -

. height(right)

* AVL trees are usually not perfectly balanced
however, the biggest difference in any two branch lengths will be no more than one level

* ' The balance factor will be 1 for left hlgh

' -— 1 for right high

0 for balanced node

* S0 AVL tree each node have three values of balance factor whlch are-1,0, 1.

- We can say that the absolute value of balance factor should be less than or equal to 1. Balance

factor= H(T)- H(T).

AVL Tree

AVL Tree

Not an AVL Tree

(ii) Threaded binary tree A Threaded Binary Tree is a binary tree in which every node that
does not have a right child has a THREAD (in actual sense, a link) to its INORDER successor. By
doing this threading we avoid the recursive method of traversing a Tree, which makes use of stacks
and consumes a lot of memory and time. '
The node structure for a threaded binary tree varies a bit and its like this —

- struct NODE
{ ‘
struct NODE *lefichild;
_ int node_value;
struct NODE *rightchild;
struct NODE *thread;
}

* Let’s make the Threadéd Binary tree out of a norm;al binary tre.e
&5 © 0 .
) (&)

'INORDER traversal for the above tree is— D BAE C. So, the respective Threaded Bmary tree
will be '

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

B has no right child and its inorder successor is A and so a thread has been made in between them.
Similarly, for D and E. C has no right child but it has no inorder. successor even, so it has a hanging
thread. " . :

Q.4. Attempt any TWO parts: , (2x10=20)
(a) (i) Obtain the minimum number of entnes that can be made in a B-tree of order m and of levels. -
(i) Use merge - sort algonthm to sort the following elements 15, 10, 5, 20, 25, 30, 40, 3.

_ Ans. (a) (i) Minimum no of entries that can be made in tree of order m 7 and level |

No of nodes at level 0=1

No of nodes of level [=2

Minimum No ofnodes atlevel 2=2 * ((m+1)/2)
Minimum No of nodes at levél 3=2 * ((m+1)/2)?
Minimum No of nodes at level 4=2 * (m+1)/2)*

Minimum No of nodes at level 1=2 *((m+1)/2)"! ‘ : s

Thus Minimum No of nodes in B—tree atlevel 1= _
242 % ((m+])/2)+ 2 * (m+1)/2)? §—— +2*((m+1)2)

=1+2[1H(m+1)2+ (m+1)/2)* + Hm+1)2)1]

=144* (1- (m+1)/2))/(1-m) :

Since each intermediate node should have (m-1)/2 keys

So minimum entries = 1+4* (1-(m+1)/2))/(1-m) *(m-1)/2 = 1+2[((m+1)/2))' - l]
Ans, (ii) Merge sort: 15 10°5 20 25 30 40 35

Step1 :- 15 10 5 20 25 30 40 35
10.15 520 25 30 35 40
Step2:-1015 " 520 25 30 35 40
5710 15 20 25 30 35 40
Step3 -5 10 15 20 253035 40

.5 10 152025303540
(b) How can you find shortest path between two nodes in a graph by Dijkstra’s algonthm" Explain
by suitable diagram and algorithm. -

Ans. Dijkstra’s algorithm solves the single-source shortest-path problem when all edges have
non-negative weights. It is a greedy algorithm énd similar to Prim’s algorithm. Algorithm starts at the
source vertex, s, it grows a tree, T, that ultimately spans all vertices reachable from S. Vertices are .
added to T in arder of distance i.e., first S, then the vertex closest to S, then the next closest, and so on.
Following implementation assumes that graph G is represented by adjacency lists.

DIJKSTRA(G, w, s): ’)

1. INITIALIZE SINGLE-SOURCE(G s)

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

S?{} //S willultimately contains vertices of final shortest-path weights from s
Initialize priority queue Qie.,Q ? V[G] ,
while priority queue Q is not empty do
u ? EXTRACT_MIN(Q) //Pull out new vertex
S ?2Sufu}
// Perform relaxation for each vertex v adjacent to 4
7 for each vertex v in Adj[u} do
8. - Relax(u,v,w)
The relaxation procedure checks whether the current best estimate of the shortest distance to v
(dv]) can be improved by going through u (i.e. by making u the predecessor of v):
relax(Node u, Node v, double w[][]) .
if d[v] > d[u] + w(u,v] then
dfv] := d[u] + w[u,v]
pilv] = u '
Analysis: Like Prim’s algorithm, Dijkstra’s algorithm runs in O(|E|lg|V]) time.
Example: Step by Step operation of Dijkstra algorithm.
Stepl. Given initial graph G=(V, E). All nodes nodes have infinite cost except the source node, s,
which has 0 cost.)

S s W N

A
n

[~

y
[} 00
.2

X

“Step 2. First we choose the node, which is closest to the source node, s. We initialﬁe d[s]to 0. Add’
itto S. Relax all nodes adjacent to source, s. Update predecessor (see red arrow in diagram below) for
all nodes updated. \

)

Step 3. Choose the closest node, x. Relax all nodes adjacent to node x. Update predecessors for -
‘nodes u, v and y (again notice red arrows in diagram below).

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Step 4. Now, node y is the closest node, so add it to S Relax node v and adjust its predecessor (red '
arrows remember!).

;
i

\

Step 5. Now we have node u that is closest. Choose this node and adjust its neighbor node v.
u A\

1

Step 6. Finally, add node v. The predecessor list now def ines the shortest path from each node
- to the source node, s. AN

© Whatisa graph? Dlﬂ'erentlate between (i) undirected and dlrected graph (ii) Cycleand Hamiltonian
cycle.
Ans. Graph: A vertex (node) isa stand-alone object. Represented by a circle.
An edge (link) is an object connecting two vertices. Represented by either an arrow or a line.
Directed Graphs: A directed graph (or digraph) is a graph with directed edges.
\Edges have dlrectlons so they are represented by arrows.Each edge leaves a vertex and ‘enters a
vertex. :

t

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

Undirec::. - ¢ phs : An undirected graph is a graph with undirected edges. Edges have no
directions s¢ th - 1, > represented by lines.Self- loops are forbidden. Edge (u,v) i is the same as edge

V).

The number of edges with one endpoint on a given vertex is called that vertex’s degree. In a .
directed graph, the number of edges that point 7o a given vertex is called its in-degree, and the number
that point from it is called its out-degree. In an undirected graph, The out-degree and the in-degree are
not defined. Only the degree of a vertex is defined.

Cycle and Hamiltonian cycle:
Cycle: A path is known as closed path cycle if V =V otherwise if all the nodes are dlstmct then

path is known as simple path.
Hamiltonian cycle: Hamiltonian cycle is closed path/ walk in which each vertex is traversed only
once except for the starting vertex , as the walk terminates at the starting vertex

An example of a graph

Vs v3

V6 vy

Consider the graph presented in Fig. as an example. The cycle v VeVaV,V,V,V, is a

Hamiltonian cycle. Of course, there are many other cycles that are not Hamiltonian, for
example, v,v,v,v, or the loop v,v,v,v,v.v v,
Q.5 Attempt any two questions: (2x10=20)
(a) Write down the algorithm for bubble sort and explain how you can soi't_ an unsorted array of
integers by using quick-sort. Find out the time complexity of your algorithm.

Ans. Bubble sort Algorithm: ‘

fori= Oton '

'forj =0ton-i

ifAGl<Af+]
swap(A,ij) -

The QUICKSORT Example Qunck sort sorts by emplovmg a dmde and conquer strategy to
d1v1de a hst into two sub-lists.

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

The steps are:
1. Pick an elemént, called a p:vot from the Fist.)
2. Reorder the list so that all elemeénts which are less than the pivot come before the pivot and
so that all elements greater than the pivot come after it (equal values can go either way). After
thispartitioning , the pivotis in ifs final position . This is called the partition operation.
Recursively sort the sub-list of lesser elements and the sub-list of greater elements. The base
case of the recursion are lists of size zero or one, which are always sorted.

|
BIERELLEE

S
% |
| « ; L ~
o o B3 H
» | &3
| I
GEEREEEER

Full example of qmcksort on a random set of numbers. The boxed element is the pivot. lt is always
chosen as the last element of the partition.

Complexﬂy:— ,
Worst -Average Best
Bubble sort; Oo(n?) o) O
Quick sort: om?) O(nlog,n) O(nlog,n)

(b) Define hash function. State different types of hash function. Give their algorithm and explain
them by smtablednagram.

Ans. Hash Function: The basic 1dea in hashmg is the transformation of key into the compond-.
ing location in the hash table. This is done by hash fimction.

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

A functlon can be deﬂned as a function that take key as input and transforms it mto a hash index.
. It is usually denoted by H - . :
" HK->M

Where H is a hash function

Kis asetofkeys

M is a set of memory addresses :

Sometimes, such a function H may not generate distinct valueslt is possible that two different
keys K, and K, will yield the same hash address. This situation is called Hash Collision.

Different Hash Functions:

¢ Division Remainder Method

. & Mid Square Method

e Folding Method

¢ Multiplication method]

Division Remainder Method: In Division Remainder Method, key k to be mapped into of the m
slots in the hash table+s dwnded by mand the remainder of this division is taken as index into the hash
table.

hk)=kmodm : ' range 0 to m-1

h(k)=kmodm - range l tom

Example: Consnder a hash table with 9 slots i.e m=9, then the has function w1ll map the key 132 to
slot 6.

h(132)=132mod9=6

Means address of data or key 132 will store in 6* posntlon of Hash table

Mid Square Method: 1t is operates in two steps:

The square of the key value k is taken.

~ In second step, the hash value is obtained by deleting digits from ends of the squared value i.e.
k2. it is important to note that same posmon of k» must be used for all keys. Thus, the hash function is
h(k)=s

. Where s is obtaingd by deleting digits from both sides of k2,

- Consider the hash table with 100 slots i.e. m =100, and key values k=3205, 7148, 2345

K 3205 7148 2345
K 10272025 ’ 51093904 . 5499025
h(k) Y/ ’ 3 9 ‘

Folding Method: Itisalso operates in two steps:

In the first step, the key value k is divided into number of parts, k1,k2,k3........ kr, where each part
has same number of digits except the last part, which can have lesser digits.

In second step, these parts are added together and the hash.value is obtained by ignoring the last
carry, if any.
" Forexample, if the hash table has 1000 slots, each part will have three digits, and the sum of these
parts after ignoring the last carry will also be three digit number in the range 0 to 999.

Multiplication method: The multiplication method operates in two'steps:

The key value k is multiplied by a constant Asin the range 0<A<1 and extract the ﬁ'actxonal part of
the value kA. .

The fractional value obtained above is multlphed by m and the floor of the result is taken as the
liash value. That is Hash Function is h(k) = m(kA mod 1)

Although this method works with any value of A. knuth has suggested in his study that the
following value of A is likely to work reasonable well. A“(v5 - 1)/2 = 0.6180339887...

Consider a hash table with 10000 slots i.e. m= 10000, will map the key 123456 to slot 41 since

h(123456)= 10000 x (123456 x 0.61803... mod 1)=41.151=41 '

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

(c) Write shorts notes on:

(i) B+ Tree.

(ii) Garbage collection.

Ans, (i) B+ Tree: The B-tree is the classic dnsk-based data structure for indexing records based

- on an ordered key set. The B*-tree (sometimes written B+-tree, B+tree, or just B-tree) is a variant of the
original B-tree in which all records are stored in the leaves and all leaves are linked sequentially. The
B-~tree is used as a (dynamic) indexing method in relational database management systems. B+-tree
considers all the keys in nodes except the leaves as dummies. All keys are duplicated in the leaves.
This has the advantage that is all the leaves are linked together sequentially, the entire tree may be.
scanned without visiting the higher nodes at all.

- A B+ -Tree consists of one or more blocks of data, called nodes, linked together by pointers.

_The B +-Tree is a tree structure. The tree has a single node at the top, called the root node. The root
node points to two or more blocks , called child nodes. Each child nodes points to further child nodes
and so on.

e The B + -Tree consists of two types of (1) internal nodes and @) leaf nodes:

¢ Internal nodes point to other nodes in the tree.

o Leaf nodes point to data‘in the database using data pointers.

Order of a B +-Tree: The order of a B + -Tree is the number of keys and pointers that an internal
node can contain. An order size of m means that an internal node can contain m-1 keys and m pointers.

_(ii) Garbage Collection: In computer science, garbage collection (GC) is a form of automatic
memory management. It is a special case of resource management, in which the limited resource being
managed is memory. The garbage collector, or just collector, attempts to reclaim. garbage, or memory
occupied by objects that are no longer in use by the program

Garbage collection is often portrayed as the opposite of manual memory management, which
requires the programmer to specify which objects to deallocate and return to the memory system.
However, many systems use a combination of the two approaches, and other techniques such as
stack allocation and region inference can carve off parts of the problem.

Garbage collection does net traditionally manage limited resources other than memory that typical
programs use, such as network sockets, database handles, user interaction windows, and file and
device descriptors. Methods used to manage such resources, particularly destructors, may suffice as
well to manage memory, leaving no need for GC. Some GC systems allow suich other resources to be
associated with a region of memory that, when cdllected, causes the other resource to be reclaimed;
this is called finalization. Finalization may introduce complications limiting its usability, such as
intolerable latency between disuse and reclaim of especially limited resources. -

Download All Btech Stuff From StudentSuvidha.com

http://studentsuvidha.com/
http://studentsuvidha.com/

