Roll No. 3322 976

24792

B.Tech. 6th Sem. (Electronics & Computer Engg.) Examination – May, 2014

DIGITAL SIGNAL PROCESSING

Paper: EC-614-F

	Lupus		
Time : TI	rree hours]	[Maximum Marks : 1	00
Before ans	swering the questions, cand	lidates should ensure that th	ıey
have been	supplied the correct and	complete question paper. I	No
complain	t in this regard, will be ente	rtained after examination.	
Note:	Question number 1 is	compulsory, and attem	pt
	one question from each	ch of the four sections. A	All
	questions carry equal r	narks.	
1 . (a)	Give the steps in the d	esign of a digital filter fro	m
	analog filter?		3
(Jay)	State the properties of	FIR filter.	2
(c)	Are FIR filters inheren	tly stable ?	2
(d)	Give the desirable char	acteristics of the window?	? 2

24792-100-(P-4)(Q-9)(14)

P. T. O.

/	
(e) Write any four applications of multi-rate sign processing.	na
(f) Explain the shifting and scaling property of	-
transform with suitable example.	4
(g) What do you understand by aliasing? How w	ril 3
SECTION - A	
2. (a) What do you understand by signal ? Expla	ir
various types of signals.	8
(b) State and prove the parseval's energy theorem for	or
discrete time signal	2
3. (a) What do you mean by random and determinist signals ? Explain you answer with suitab	ic le
example.	8
(b) Find Fourier transform of $f(t) = e^{st}$ cosbt.	2
SECTION - B	
(a) What is an IIR filter? Compare an IIR filter with a FIR filter.	in 8
(b) Obtain the direct form I and direct form	П
realisations for third order IIR transfer function	m
	2
$H(z) = (0.28z^2 + 0.319z + 0.04)/(0.5z^3 + 0.3z^2 + 0.17z - 0.2)$)
24792-100-(P-4)(Q-9)(14) (2)	

5. (a) A digital communication link carries binary coded words representing samples of an input signal

 $Xq(t) = 3\cos 600\pi t + 2\cos 1800.t$

the link is operated at 10,000 bits/s and each input samples is quantized 1024 different voltage levels.

- (i) What are the sampling frequency and the folding frequency?
- (ii) What is the Nyquist rate for the signal $\chi_q(t)$? 12
- (b) How will you reconstruct band limited signal from its samples? Explain with mathematical equations.

SECTION - C

6. (a) Using residue method, determine x(n) for

(X(z)=1/(z-0.25)(z-0.5), ROC: |Z| > 0.5 12

- (b) Explain final value and initial value theorem. 8
- 7. (a) Using a rectangular window technique design a low pass filter with pass band gain unity, cut off frequency of 1000 Hz & working at a sampling frequency of 5 Khz. The length of the impulse response should be 7.

24792-100-(P-4)(Q-9)(14)

(3)

P. T. O.

(b) Explain the finite word length effect in FIR digital filter.

SECTION - D

- 8. (a) Explain the implementation steps in speech coding using transform coding.
 - (b) Discuss the design steps involved in the implementation of multistage sampling rate converter.
- 9. Explain the efficient implementation of polyphase decimator and interpolator20