Download all Notes and papers from StudentSwwindhassopingts.com

Roll No.

Total No. of Questions: 09]

[Total No. of Pages: 02]

B.Tech. (Sem. - 3rd)

DIGITAL CIRCUITS AND LOGIC DESIGN

SUBJECT CODE: CS-205

<u>Paper ID</u>: [A0453]

[Note: Please fill subject code and paper ID on OMR]

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Section A is Compulsory.
- 2) Attempt any Four questions from Section B.
- 3) Attempt any Two questions from Section C.

Section - A

Q1)

 $(10 \times 2 = 20)$

- a) Convert binary number 1001 into gray.
- b) Find SOP form of $f = AB + BC + \overline{A}$.
- c) Implement half subtractor using NAND gates.
- d) Find % age resolution of a 12 bit BCD input D/A converter which has full scale o/p of 29.97 V.
- e) Convert a D flip flop into a T flip flop.
- f) Differentiate between Asynchronous counter and Synchronous counter.
- g) What is significance of figure of merit of flip flops.
- h) Design a 4:1 mux.
- i) Classify logic families on the basis of number of gates on a single chip.
- j) Write pros and cons of SRAM and DRAM cell.

Section - B

 $(4 \times 5 = 20)$

- **Q2)** Design a combinational ckt with 3 inputs and 1 output. The output is high only when more than one input is high.
- Q3) Design a MOD 6 counter using T-flip flops.

R-742

P. T.O.

Download all Notes and papers from StudentSuvidha.com

Download all Notes and papers from StudentSwwindharsobjects.com

- Q4) What are multivibrator circuits. Explain Astable multivibrator with the help of circuit diagram.
- Q5) Explain the operation of two input TTL NAND gate.
- **Q6)** Using Boolean Algebra show that $(A + B)(\overline{A} + C)(B + C) = AC + B\overline{A}$

$$C)(D + C) = NC + DN$$

Section - C

$$(2\times 10=20)$$

- **Q7)** Design a comparator circuit which compares two 2 bit numbers. It has three outputs A > B, A < B and A = B. Also show that $A < B = \overline{A > B} \cdot \overline{A = B}$.
- Q8) Design a three bit, MOD 6, unit distance up-down counter.
- Q9) What are programmable logic devices. What are their advantages. Explain in detail the architecture of a programmable logic device.

R-742 2