a2zSubjects.coom

Roll No. Total No. of Questions : 09]

[Total No. of Pages : 02

B.Tech.(Sem. – 3rd/4th) MATHEMATICS III <u>SUBJECT CODE</u> : CS - 204 <u>Paper ID</u> : [A0495]

Time : 03 Hours

Instructions to Candidates:1) Section - A is Compulsory.

Attempt any Four questions from Section - B.

3) Attempt any Two questions from Section - C.

Section - A

Q1)

- a) State Lagrange's mean value heorem and verify the same for $f(x) = x^2$, [1,5]
- b) Evaluate $\int_0^2 \int_0^{\sqrt{2x}} xy \, dy \, dx$
- c) Determine whether $f(z)=(x-y)^2 + 2i(x+y)$ analytic anywhere?
- d) Find $\oint_{c} \frac{5z^2 4z + 3}{z 2} dz$ where c is ellipse $16x^2 + 9y^2 = 144$

e) Determine the residue at the poles for $\frac{\sin z}{z^2}$

- f) Write down one dimensional heat equation? Classify the differential equation in terms of i) Elliptic ii) Parabolic or iii) Hyperbolic
- g) Write down the algebraic equation by taking Laplace transform of the differential

equation $\frac{d^2 y}{dx^2} + \frac{dy}{dx} - 2y = x$ y(0) = 1, y'(0) = 0

h) By Euler's method find y(0.2), $\oint x + y = 0.1$, y(0) = 1, where H is step length.

i) Explain Taylor's series method for solving the differential Eq $\frac{dy}{dx} = f(x,y)$,

 $y(n_0) = y_0$. Compute y(0.2) if $f(x, y) = x + y, x_0 = 0, y_0 = 1$. Find fourier transform of $f(x) = \begin{cases} 1 & |x| < 9 \\ 0 & |x| > 9 \end{cases}$

- $(4 \times 5 = 20)$
- **Q2)** Find the volume of tetrahedron bounded by coordinate planes and the plane x+2y+3z=4.

Section – B

Q3) Show that for f(z) =
$$\begin{cases} \frac{2xy(x+1y)}{x^2 + y^2} & z \neq 0\\ 0 & z = 0 \end{cases}$$

J - 788

j)

P.T.O.

Download all Notes and papers from StudentSuvidha.com

1

Maximum Marks : 60

 $(10 \times 2 = 20)$

Cauchy Riemann equations are satisfied at origin but derivative of f(z) does not exist at origin.

- Q4) Prove that circles are mapped on to circles under the mapping $w = \frac{1}{2}$.
- Q5) Use Runge-kutta method of order four to find Y at x=0.1 given that

(25) $v_{x}(dy + dx) = y(dx - dy)$, y(0) = 1(26) Find the general solution of Laplace equation $\frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y^{2}} = 0$, $v(x, \infty) = 0$. Section – C (2 × 1)

 $(2 \times 10 = 20)$

Expand f(z) in lauss erits series, where f(z) = $\frac{1}{z^2 - 4z + 3}$, for 1 < |z| < 3. Q7) a)

b) Evaluate
$$\oint \frac{1}{c(z^2+4)^2} dz$$
, where is $|z-i| = 2$

- (08) A tightly stretched string has its ends fixed at x=0 and x=L. At time t=0, the string is given a shape defined by $f(x) = \mu x(I-x)$, where μ is a constant and then released. Find the displacement of any point x of the string at any time t>0.
- Q9) Find the value of u(x, y) satisfying the Laplace equation $\nabla^2 u=0$ at the pivotal points of a square region with boundary values as shown in figure.

Solve the problem up to 1st iteration after obtaining initial values.

(GROGRO

J - 788

Download all Notes and papers from StudentSuvidha.com