Roll No.
Total No. of Questions: 09]
B.Tech.(Sem. $-3^{\text {rd }} / 4^{\text {th }}$)

MATHEMATICS III
SUBJECT CODE: CS - 204
Paper ID : [A0495]
[Total No. of Pages : 02

Maximum Marks : 60
Time : 03 Hours
Instructions to Candidates:

1) Section- A is Compulsory.
2) Attempt any Four questions from Section - B.
3) Attempt any Two questions from Section-C.

Section - A
Q1)
a) State Lagrange's mean valuetheorem and verify the samefor $\mathrm{f}(x)=x^{2},[1,5]$
b) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2 x}} x y d y d x$
c) Determine whether $f(z)=(x-y)^{2}+2 i(x+y)$ analytic anywhere?
d) Find $\oint_{c} \frac{5 z^{2}-4 z+3}{z-2} d z$ where c is ellipse $16 x^{2}+9 y^{2}=144$
e) Determine the residue at the poles for $\frac{\sin z}{z^{2}}$
f) Write down one dimensional heat equation? Classify the differential equation in terms of i) Elliptic ii) Parabolic or iii) Hyperbolic
g) Write down the al gebraic equation by taking Laplace transform of the differential equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=x \quad y(0)=1, y^{\prime}(0)=0$
h) By Euler's method find $y(0.2), y=x+y \quad h=0-1, y(0)=1$, where H is step length.
i) Explain Taylor's series method for solving the differential Eq $\frac{d y}{d x}=f(x, y)$, $y\left(\mathrm{n}_{0}\right)=y_{0}$. Compute $y(0.2)$ if $\mathrm{f}(x, y)=x+y, x_{0}=0, y_{0}=1$.
j) Find fourier transform of $\mathrm{f}(x)= \begin{cases}1 & |x|<9 \\ 0 & |x|>9\end{cases}$

Section - B
Q2) Find the volume of tetrahedron bounded by coordinate planes and the plane $x+2 y+3 z=4$.
Q3) Show that for $\mathrm{f}(z)=\left\{\begin{array}{ccc}\frac{2 x y(x+i y)}{x^{2}+y^{2}} & \text { if } & z \neq 0 \\ 0 & z=0\end{array}\right.$

Cauchy Riemann equations are satisfied at origin but derivative of $\mathrm{f}(z)$ does not exist at origin.
Q4) Prove that circles are mapped on to circles under the mapping $w=\frac{1}{z}$.
Q5) Use Rungekutta method of order four to find Y at $x=0.1$ given that $x(\mathrm{~d} y+\mathrm{d} x)=y(\mathrm{~d} x-\mathrm{d} y), y(0)=1$
Q6) Find the general solution of Laplace equation $\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0, v(x, \infty)=0$.

$$
\text { Section }-\mathrm{C} \quad(2 \times 10=20)
$$

Q7) a) Expand $\mathrm{f}(z)$ in lauss erits series, where $\mathrm{f}(z)=\frac{1}{z^{2}-4 z+3}$, for $1<|z|<3$.
b) Evaluate $\phi \frac{1}{c\left(z^{2}+4\right)^{2}} d z$, where is $|z-i|=2$

Q8) A tightly stretched string has its ends fixed at $x=0$ and $x=\mathrm{L}$. At time $\mathrm{t}=0$, the string is given a shape defined by $\mathrm{f}(x)=\mu x(1-x)$, where μ is a constant and then released. Find the displacement of any point x of the string at any timet >0.
Q9) Find the value of $\mathrm{u}(x, y)$ satisfying the Laplace equation $\nabla^{2} \mathrm{u}=0$ at the pivotal points of a square region with boundary values as shown in figure.

Solve the problem up to $1^{\text {st }}$ iteration after obtaining initial val ues.

$\cos 80 \cos 80$

