Roll No.
Total No. of Pages : 02
Total No. of Questions : 09

B.Tech. (CSE/IT) (Sem.-4th)
 MATHEMATICS-III

Subject Code : CS-204
Paper ID : [A0495]
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY.
2. Attempt any FOUR questions from SECTION-B.
3. Attempt any TWO questions from SECTION-C.

SECTION-A
$(10 \times 2=20$ Marks $)$

1. (a) State Cauchy's mean value theorem.
(b) Evaluate $\iint(x+y) d y d x$ over the region bounded by $x=0, y=0$, $x^{2}+y^{2}=9$.
(c) Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path, $y=x^{2}$.
(d) Expand $\sin z$ by Taylor's series about the point $\frac{\pi}{4}$.
(e) For the conformal transformation $w=z^{2}$, find the angle of rotation at $z=1+i$.
(f) A rod of length l with insulated sides is initially at a uniform temperature u_{0}. Its ends are suddenly cooled to $0^{\circ} \mathrm{C}$ and are kept at that temperature. If it is required to find the temperature function $u(x, t)$ then write down the initial and the boundary conditions.
(g) State the fundamental theorem of integral calculus.
(h) Use Picard's method to solve the equation, $\frac{d y}{d x}=x+y^{2}$, given that $y(0)=0$.
(i) Write the formulae for the Runge-Kutta method of order 4.
(j) Determine the residue at the pole of order 2 for the function $f(z)=\frac{z^{2}}{(z-3)(z-2)^{2}}$

SECTION-B

($4 \times 5=20$ Marks $)$
2. Obtain the value of the triple integral $\iiint(x+y+z) d x d y d z$ over the tetrahedron bounded by the co-ordinate planes and the plane, $x+y+z=1$.
3. State and prove the Cauchy's integral formula.
4. Expand, $f(\mathrm{z})=\frac{1}{(z+1)(z+3)}$ valid for (i) $1<|z|<3$, (ii) $0<|z+1|<2$.
5. Use Taylor series method to solve $\frac{d y}{d x}=x^{2}-y$ at $x=0.1$, given that $y(0)=1$.
6. Solve the partial differential equation, $\frac{\partial u}{\partial t}=\mathrm{C}^{2} \frac{\partial^{2} u}{\partial x^{2}}$, the boundary conditions are $u(0, \mathrm{t})=0, u(l, \mathrm{t})=0(\mathrm{t}>0)$ and initial condition is $u(\mathrm{x}, 0)=x, l$ being the length of the bar.

SECTION-C

($2 \times 10=20$ Marks $)$
7. A string is stretched and fastened to two points l apart. Motion is started by displacing the string in the form $y=a \sin \frac{\pi x}{l}$ from which it is released at time $t=0$. Show that the displacement of any point at a distance x from one end at time t is given by, $y(x, t)=a \sin \frac{\pi x}{l} \cos \frac{\pi c t}{l}$
8. Evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)} \mathrm{dx},(\mathrm{a}>0, \mathrm{~b}>0)$, using the concept of contour integration.
9. Find the values of $u(x, t)$ satisfying the parabolic equation, $\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}$ and the boundary conditions $u(0, t)=0=u(8, t)$ and $u(x, 0)=4 x-\frac{x^{2}}{2}$ at the points $x=i: i=0,1,2, \ldots, 7$ and $t=\frac{1}{8} j: j=0,1,2, \ldots, 5$.

