Roll No. $\qquad$

# Paper ID [BC102] 

# (Please fill this Paper ID in OMR Sheet) <br> BCA (Sem. - $1^{\text {st }}$ ) <br> MATHS (Bridge Course) (BC - 102) 

Time : 03 Hours
Maximum Marks : 60

## Instruction to Candidates:

1) Section - A is Compulsory.
2) Attempt any Four questions from Section - B.

Section - A
Q1)
$(10 \times 2=20)$
a) Define the primary and secondary data.
b) State the Primary rules to be observed in classification of data.
c) Define the minors and co-factors of the determinant.
d) State the properties of matrix addition.
e) Find the value of $(99)^{4}$, using Binomial theorem.
f) State the principle of mathematical induction.
g) State the Associate Law in set theory.
h) State the De Morgan's Law in set theory.
i) Eliminate $\theta$ between $\sin \theta+\cos \theta=x$ and $\sin \theta-\cos \theta=y$.
j) Find the middle terms in

$$
\left(\frac{2 y^{2}}{3}+\frac{3}{2 y^{2}}\right)^{10}
$$

## Section-B

$(4 \times 10=40)$
Q2) Calculate the arithmatic mean and median of the frequency distribution in given below. Hence calculate the mode using the emperical relationship between them.
$\begin{array}{lcccccccc}\text { Class-limits } & 150-154 & 135-139 & 140-144 & 145-149 & 150-154 & 155-159 & 160 & -164 \\ \text { Frequency } & 5 & 15 & 28 & 24 & 17 & 10 & 1\end{array}$
Q3) Show that

$$
\left|\begin{array}{llll}
4 & 5 & 6 & x \\
5 & 6 & 7 & y \\
6 & 7 & 8 & z \\
x & y & z & 0
\end{array}\right|=(x-2 y+z)^{2}
$$

Q4) State and prove Binomial theorem for positive integral index.
Q5) Prove by mathematical induction that $n(n+1)(2 n+1)$ is a multiple of 6 for all $n \in \mathrm{~N}$.

Q6) In a town of 10,000 families, it was found that $40 \%$ families buy newspaper A, $20 \%$ families buy newspaper B and $10 \%$ families buy newspaper C. $5 \%$ families buy A and $\mathrm{B}, 3 \%$ buy B and C and $4 \%$ buy A and C . If $2 \%$ families buy all the three newspapers, find the number of families which buy (a) A only, (b) B only, (c) None of A, B \& C.

Q7) A person standing on the bank of a river observes that the angle subtended by a tree on the opposite bank is $60^{\circ}$. When he retires 100 m from the bank, he finds the angle to be $30^{\circ}$. Find the height of the tree and breadth of the river.

