END TERM EXAMINATION

FOURTH SEMESTER [B.TECH] MAY-JUNE 2017

Paper Code: ETEE 202

Subject: Electrical Machines-II

Time: 3 Hours

Maximum Marks: 75

Note: Attempt any five questions including Q.No. 1 which is compulsory.

Select one question from each unit.

- Q1. Write short, up to the point and clear answer of the following: (10x2.5=25)
 - a) Why does an induction motor not develop torque at synchronous speed?
 - b) What is the frequency of the rotor current of a 415 V, 50 Hz, 4-pole induction motor running at 1440 rpm?
 - c) What are cogging and crawling in squirrel cage induction motors. How can their effect be minimized?
 - d) What are the advantages of rotating field and stationary armature of synchronous generator?
 - e) Define pitch factor and distribution factor of a synchronous machine.
 - f) What is short circuit ratio(SCR) of synchronous generator and what advantages are of high value of SCR?.
 - g) Why speed of single-phase induction motor is not reversed if connection of supply terminal are interchanged, but is reversed, if terminals of either main winding or auxiliary winding or auxiliary winding are interchanged?
 - h) What improvements should be made to run single-phase ac series motor satisfactorily?
 - i) State the principle of working of a reluctance motor.
 - j) What are the pull-in torque and pull-out torque of synchronous motors?

Unit-I

- Q2. Name the different methods of speed control of 3-phase inductions motors and describe the Kramer system of speed control with neat diagram. Also state its merits and demerits. (3+5.5+4=12.5)
- Q3. What is slip in induction motors? Derive relation between slip, rotor copper loss and rotor input power. A 3-phase, 2-pole, 50 Hz induction motor is running at 2800 rpm with an input power of 15 kW and a terminal current of 22A. The stator resistance is 0.2Ω per phase. Calculate copper loss of rotor. (2+4+6.5=12.5)

Unit-II

- Q4. Describe two-reactance theory for synchronous machines. Explain why it is not applicable for cylindrical rotor machines. Also explain and draw neat phasor diagram of an alternator based on it. (5+2.5+5=12.5)
- Q5. What is synchronous reactance? How is it determined from OCC and SCC of an alternator? Calculate the saturated synchronous reactance of a 85 kVA synchronous machine which achieves its rated open-circuit voltage of 460 V at a field current 8.7A and which achieves the rated short-circuit current at field current of 11.2 A. (3+4+5.5=12.5)

P.T.O.

ETEE-202

Unit-III

- Q6. State the principle of working of synchronous motor and explain why it is not self-starting. Describe any two methods of its starting. (3:5+3+6=12.5)
- Q7. Explain and draw the neat phasor diagram of a synchronous motor at lagging power factor. Also derive the expressions for the power developed by synchronous motor.

 (5+7.5=12.5)

Unit-IV

- Q8. What is double-revolving-field theory? On its basis draw torque-slip characteristics, explain the working of single-phase induction motor and state why single-phase induction motors are not self-starting. (3+3+3.5+3=12.5)
- Q9. Write short notes on:
 - a) Stepper Motor
 - b) AC Servo Motor

(6.5)

(6)

ETEE-202