END TERM EXAMINATION

FOURTH SEMESTER [B.TECH] MAY-JUNE 2017

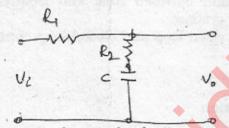
Paper Code: ETEE-212

Subject: Control Systems

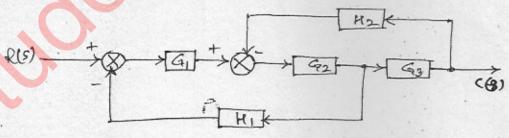
Time: 3 Hours

Maximum Marks: 75

Note: Attempt any five questions including Q.no. 1 which is compulsory.

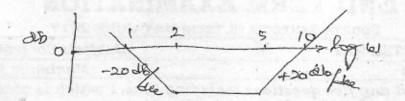

Assume missing data if any.

Q1 Write short notes on:


(5x5=25)

- (a) Servomechanism
- (b) Signal flow graph
- (c) Feedback Compensation
- (d) Magnetic Amplifier
- (e) Minimum Phase Network
- Q2 (a) Obtain transfer function for the circuit shown:

(5



- (b) Derive expression for the output of an undamped unity negative feedback second order system to a unit step input. (7.5)
- Q3 (a) Sketch polar plot for G(s) = 3/[(s + 0.5)(s + 1)] and find its intersection with imaginary axis. (5)
 - (b) Open loop transfer function of a UNFB system is $G(s) = k/[s(s^2 + 6s + 4)]$ where k = 8 is forward path gain. Find the value of k for which there is a pair of closed loop poles on $j\omega$ -axis. Find also the third closed loop pole and gain margin. (7.5)
- Q4 (a) Obtain signal flow graph of the system whose block diagram is shown and from that determine transfer function using Manson's formula. (7.5)

- (b) For a system function G(s) = 4(s+5)/[s(s+1)], find the frequency at which (i) phase angle = -124° , (ii) magnitude is unity. (5)
- Q5 (a) Enumerate steps adopted for sketching Root-Locus graph for a normal second order control system. (6)
- (b) Draw Root-Locus for G(s). $H(s) = K(s+3)/[s^2(s+5)]$. (6.5)
- Q6 (a) Bode's plot for a system is shown here. (7.5)
 Obtain its transfer function.
 P.T.O.

ETEE-212

- (b) Give five examples of popular open loop control systems. (5)
- Q7 (a) State and example Nyquist's stability criterion as applied to feedback control systems. (7.5)
 - (b) For a system having G(s). H(s) = 5/(s-1) investigate, using Nyquist's criterion, if the system is stable. (5)
- Q8 (a) Explain the co-relation between time and frequency response of a typical second order system. (5)
 - (b) Distinguish between open loop and closed loop control systems. (7.5)
- Q9 Write short note on:
 - (a) PID Controllers
 - (b) Routh Hurwitz Criterion (6.5)

FTEE-212