Roll No.

24266

B. Tech. 5th Semester (CSE)

Examination – December, 2016 THEORY OF AUTOMATA COMPUTATION

Paper: CSE-305-F

Time: Three Hours]

[Maximum Marks:100

Before answering the question, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Question No 1 is compulsory and Attempt at least one question from each of the four sections, all questions carry equal marks.

- 1. (a) Explain at least four differences between DFA and NFA.
- (b) Explain Moore machine with the help of transition table and also draw transition diagram of the given transition table.

 4
- (c) Briefly explain any two types of normal forms in CFG.

24266-4850-(P-7)(Q-9)(16)

P. T. O.

- (d) explain its basic structure. Define Turing machine mathematically and also
- (e) they are uselss? What are UNIT productions in CFG and why

SECTION - A

N (a) $M = (\{q_1, q_2, q_3\}, (0, 1), \delta, q_1, \{q_3\})$ is a NFA,

where δ is given by:

$$\delta(q_1,0) = \{q_2,q_3\}, \quad \delta(q_1,1) = \{q_1\}$$

$$\delta(q_2, 0) = \{q_1, q_2\}, \quad \delta(q_2, 1) = \{\phi\}$$

$$\delta(q_2, 1) = \{ \phi \}$$

 $\delta(q_3, 0) = \{q_2\},\$ $\delta(q_3, 1) = \{q_1, q_2\}$

Construct an equivalent DFA.

12

(b) Construct a Melay machine equivalent to given Moore machine:

	Present State
a=0 $a=1$	Next State
Output	

ω. (a) Remove the ε - transition from the given NFA. 10 (Note: By ϵ - closure method only)

- (b) Take an example of Melay and Moore machine each and process any string of at least 4 alphabets from these machines and produce the resulting
- (c) State and prove Arden's theorem.

SECTION - B

4. (a) Convert the grammar in GNF

$$A \rightarrow SS | b$$

(Note : by taking S as A_1 and A as A_2 method

P. T. O.

24266- -(P-7)(Q-9)(16)

(3)

(b) Discuss the ambiguity in CFG with the help of example.

5. (a) State and prove pumping lemma for regular languages.

(b) Find a reduced grammar equivalent to the grammar G whose productions are:

S-AB|CA

B→Bc | AB

 $A \rightarrow a$

C→aB|b

SECTION - C

6. (a) Design a PDA for the language

 $L = \{ \omega \in (a, b)^* | \omega \text{ has equal number of a's and b's} \}$

Also show the acceptance of string abab with the help of designed PDA.

10

(b) Design a Turing Machine to recognise the language

 $L = \{a^nb^n \mid n \ge 1\}$

Also perform the trace of the machine by taking a string aabb.

7. (a) Design a PDA for the language

 $L = \{ \omega \omega^r | \omega \in (a, b)^* \}$

(i.e. without marker in the middle)

10

(b) Discuss the halting problem and PCP problem of turing machines.

24266-4850-(P-7)(Q-9)(16)

24266-4850-(P-7)(Q-9)(16)

(4)

16) (5)

P. T. O.

(a) What are Primitive recursive functions? Show that the following function is primitive recursive:

10

$$(x,y) = x - y$$

- (b) Show that the CSL's following operations: are closed under the
- Union

(iii) Intersection

(ii)

Cocatenation

(iv) Substitution

9 (a) Disuss in detail Chomsky hierarchy of grammars help of diagram. of classes under Chomsky classification with the and also explain the relation between languages

(b) Define the following:

Recursive functions

(ii) Partial Recursive functions

(iii) Primitive Recursive functions

24266-

24266-

-(P-7)(Q-9)(16)

(6)

-(P-7)(Q-9)(16)