B.Tech. 4th Semester (ME) Examination, May-2016

FLUID MECHANICS

Paper-ME-208-F

Time	e allow	ved: 3 hours] [Maximum marks	: 100
Note	att	testion No. 1 is compulsory. Students have empt five questions in total, at least one que m each section.	ve to stion
1.	(a)	Define the ideal and real fluid.	5
	(b)	What is isentropic flow?	5
	(c)	What is hydraulic gradient?	5
	(d)	What is turbulent flow?	5
		Section-A	
2.	the g	ertical dock gate separates two water reserve $h H_1$ and H_2 . Find the resultant pressure exer- gate and the point of its application. If H_1 : H that position does this line tend as the depth of oth sides becomes equal?	ted on $_2 = 2$, water $_2$
3.	(a)	What are different types of flows? Explain in	detail.
	(b)	Define the stream and potential function.	10
		Section-B (ii	
4.	(a)	What is Euler's equation ? Explain in de importance.	tail its
	(b)	What is impulse momentum relationship applications?	and its
	1172	P 2 O 0(16)	P.T.O

- (a) Explain the concept of stagnation properties in detail.
 (b) Air flows with a velocity of 360 m/s at 10
 - (b) Air flows with a velocity of 360 m/sec through a duct. At a particular section of the duct, the static pressure and temp. are 75 kPa and 300K. Assuming the flow to be reversible adiabatic find out: Mach number at the given section.

Section-C

- 6. (a) What is the relationship between shear stress and pressure gradient?
 - (b) What are various major and minor losses in pipes?
- 7. A shaft of diameter 0.35m rotates at 200 rpm inside a sleeve 100 m long. The dynamic viscosity of lubricating oil in the 2mm gap between the sleeve and shaft is 8 poise. Find out the power lost in bearing. 20

Section-D

- 8. Water at 30° and atmospheric pressure flows through a smooth pipe of 5 cm I.D. The flow is fully developed and is at the rate of 2 litre/s. Find out:
 - (i) Friction factor
 - (ii) Pressure drop over a length of 5m.
 - (iii) Thickness of laminar sub layer. 20
- 9. (a) What are friction coefficient for smooth and rough pipes?
 - (b) What is Von-Karman momentum integral equation?

24172