B. Tech. 2nd Semester Examination, May-2016

PHYSICS-II

Paper-Phy-102-F

Common for all branches

Time allowed: 3 hours]

[Maximum marks: 100

Note: Attempt five questions in all selecting at least one question from each unit. Question No. 1 is compulsory.

- 1. (a) What are quarks and gluons?
 - (b) What are Miller indices? Give their significance.

4

- (c) Discuss concept of effective mass for electron and holes.
- (d) Show that group velocity and phase velocity are same in a non-dispersive medium.
- (e) In a n-type semiconductor, the Fermi level lies 0.35eV below the conduction band at 300K. If the temperature is increased to 335K, find the position of new Fermi level.

Unit-I

- 2. (a) Explain the concept of Miller indices. Deduce formula for the distance between two adjacent planes of a simple cubic lattice.
 - (b) Discuss briefly the various crystal defects present in crystals.

24019-P-3-Q-9(16)

P.T.O.

24019

3.		Derive time dependent and time indepe	ndent
		Schrodinger equation for a particle.	16

b) Discuss expectation value.

4

Unit-II

- 4. Discuss important applications of nanomaterials. Also discuss some tools to make nanostructures. 20
- 5. (a) How do you define Fermi Energy and Fermi level?

 Derive an expression for Fermi Energy. 12
 - (b) Show that average K.E. of an electron is 60% of Fermi-energy at absolute zero.

Unit-III

- 6. (a) What is the effect of periodic potential on the energy of electrons in a metal? Explain on the basis of Kronning-Penny model and also explain the formation of energy bands.
 - (b) For intrinsic semiconductor with gap width $E_g = 0.7eV$, determine the density of holes and electrons at 300 K.
- 7. What is photovoltaic cell? Explain in detail the construction and working of a photovoltaic cell. Also explain solar cell and its uses.

Unit-IV

- 8. (a) Distinguish between diamagnetic and paramagnetic substances. Derive an expression for magnetic susceptibility of a paramagnetic material. 14
 - (b) How would you use hysteresis curve to select material for the construction of permanent magnets?
- 9. (a) Describe the Weiss molecular theory of ferromagnetism and derive the Curie-Weiss law.

15

(b) A paramagnetic salt contains 10²⁸ ions/m³ with magnetic moment of one Bohr magneton.

Calculate the paramagnetic susceptibility and the magnetization produced in a magnetic field of 10⁶ amp/m when the temperature is 27°C.