Paper ID [CE208]

(Please fill this Paper ID in OMR Sheet)
B. Tech. (Sem. $-4^{\text {th }}$)

STRUCTURAL ANALYSIS - I (CE - 208)

(Paper - II)
Time : 03 Hours
Maximum Marks : 60
Instruction to Candidates:

1) Section - A is Compulsory.
2) Attempt any Four questions from Section - B.
3) Attempt any Two questions from Section-C.
a) State Castigliargs theorems.
b) State Maxwell's reciprocal theorem.
c) State middle third rule.
d) What are Spandrel braced arches.
e) Calculate the safe working pressure for a spherical Vessel, 1 m in diameter and 1 cm wall thickness, if the tensile stress is limited to $400 \mathrm{klg} / \mathrm{cm}^{2}$.
f) What is an influence line diagram? What are its uses?
g) How will you calculate the shear force at a point for a number of concentrated loads from influence lines?
h) What is shape of the cable carrying a number of point loads?
i) Find the slope at the free end of a cantilever carrying a point load at the free end by moment area theorem.
j) Explain a Conjugate Beam.

$$
(4 \times 5=20)
$$

Q2) Find the deflection at quarter span of a simply supported beam of span 'e' and lóaded with U.D.L. of intensity w/unit length throughout.

Q3) A trapezoidal masonry dam is of 18 m height. The dam is having water upto a depth of 15 m on its vertical side. The top and bottom widths of the dam are 4 m and 8 m respectively. The weight density of the masonry is given as 19.62 $\mathrm{kN} / \mathrm{m}^{3}$. Determine :
(a) The resultant force on the dam per metre length.
(b) The point where the resultant cuts the base.
(c) The maximum and minimum stress intensities at the base.

Q4) A uniform load of $4000 \mathrm{~kg} / \mathrm{m}, 6 \mathrm{~m}$ long, crosses a girder of 30 m span. Calculate the maximum S.F. and B.M. at a section 10 m from left hand support.

Q5) A three-pinned parabolic arch hasa horizontal span of 36 m with a central rise of 8 m . It carries a uniformly dioributed load of $2000 \mathrm{~kg} /$ horizontal metre run over left hand half of the 8 g an. Calculate the reactions at end hinges. Also calculate the values of poymal thrast, S.F. and B.M. at 9 m and 27 m from left hand hinge.

Q6) A light suspension bridge is constructed to carry a pathway 3 m broad over a channel 24 m wide. There are 7 equi-distant suspension rods. The central dip of the cable is 2.0 m and the platform load is $10 \mathrm{kN} / \mathrm{m}^{2}$. Find the maximum tension in the cable.

Section-C

$$
(2 \times 10=20)
$$

Q7) Find the horizontal movement of the roller end B of the frame shown in figure. Area of cross-section of all members is $20 \mathrm{~cm}^{2} . \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

D ownload all N O T E S and PA PE R S at StudentSuvidha.com

Q8) A warren girder having ©pan of 30 m consists of four equal panels shown in figure. Plot the influgice line or force in members $L_{1} L_{2}, U_{1} U_{2}$ and $U_{1} L_{2}$.

Q9) Find the horizontal thrust for the two hinged parabolic arch shown in the figure. The moment of inertia at any section is $I_{c} \operatorname{Sec} \theta$ where θ is the slope at section. I_{c} is moment of inertia at crown. Neglect effect of rib shortening.

D ownload all N O T E S and PAPE RS at StudentSuvidha.co

