Roll No		
Total No. of Ouestions	:	091

[Total No. of Pages: 02

Paper ID [A0620]

(Please fill this Paper ID in OMR Sheet)

B. Tech. (Sem. - 6th)

IRRIGATION ENGINEERING - I (CE - 306)

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Section A is Compulsory.
- 2) Attempt any Four questions from Section B.
- 3) Attempt any Two questions from Section C.

Section - A

Q1)

 $(10 \times 2 = 20)$

- a) Define irrigation. What is its objective and in how many ways it benefits the nation (Mention only points).
- b) Duty and Delta.
- c) Minor and water wurse
- d) Inundation canal and perennial canal.
- e) Major and Minor Projects.
- f) Specific yield and specific retention.
- g) Attracting and repelling spurs.
- h) Shotcrete lining and cement Mortar lining.
- i) Shallow and deep open drains.
- j) Suspended and bed loads.

E-352 [1208]

- Q2) What are the conditions for which sprinkler irrigation is suitable. How does it differ from the drip irrigation.
- Q3) What are the requirements of channel lining. Draw a lined canal section.
- Q4) Design an irrigation channel in alluvial soil according to Lacey's silt theory for the following data.
 Q = 10 cumec, f = 0.9, side slopes of channel = ½ (H): 1(V).
- Q5) In a drainage system, closed drains are placed with their centres 2.2 m below the ground level. The highest position of the drained water table is 1.9 m below the ground level. If the impervious layer is at a depth of 6 m below the ground level. Determine the spacing of drains. The average annual rainfall is 75 cm. Take $k = 1 \times 10^{-5}$ m/sec.
- Q6) What are the criteria for economic evaluation of irrigation projects.

Section - C

 $(2 \times 10 = 20)$

- Q7) Derive Dupuit's equation for the design of a tube well from unconfined aquifer. State the assumptions made in the derivation of the equation.
- Q8) Design the guide banks for a bridge site with the following data:Maximum flood discharge = 10,000 cumecs, High flood level = 200 m, River bad level = 195 m. Average diameter of silt particle = 0.3 mm, Assume any missing data suitably.
- **Q9)** Design a tube well for the following data.
 - (a) Yield required = 0.10 m³/sec
 - (b) Radius of circle of influence = 200 m
 - (c) Coefficient of permeability = 60 m/day
 - (d) Draw down = 6 m
 - (e) Thickness of confined aquifer = 30 m.