Roll No. Total No. of Pages: 02
Total No. of Questions: 09

B.Tech.(CE) (Sem.-5th)

DESIGN OF CONCRETE STRUCTURES-I

Subject Code: CE-307 Paper ID: [A0615]

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTION TO CANDIDATES :

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

I. Write briefly:

- (a) Define long column, short column & pedestal. Also give expressions for load carrying capacities of long columns.
- (b) Discuss two main drawbacks of working stress method.
- Give the stress and strain block parameters in limit state design approach for concrete.
- (d) Distinguish in the analysis philosophy of one way and two way-slabs.
- (e) What are the different states considered in Limit State of Serviceability
- (f) How is the tensile strength and modulus of elasticity of concrete linked to compressive strength?
- (g) How can the shear strength of RC sections be enhanced?
- (h) How the transverse reinforcement is provided in short columns?

- (i) Under what circumstances are doubly reinforced sections provided?
- (j) What are the two main components of staircases?

SECTION-B

- 2. Discuss the following:
 - (i) Stress-Strain Characteristics of steel reinforcement
 - (ii) Accelerators and retarders as admixtures
- A RC beam of 350mm by 500mm effective depth contains 4 bars of 25 mm diameter. Calculate the shear reinforcement needed for a factored shear force of 400 kN, if M20 concrete and Fe 250 steel is to be used as shear reinforcement.
- Design a rectangular beam to resist a bending moment of 45 kNm using M20 concrete and Fe415 stee
- 5. Discuss in detail the codal provisions to control cracking of RC elements.
- 6. What are the assumptions for the design of reinforced concrete section for limit state of collapse in bending? Derive the stress block parameters for a rectangular cross-section.

SECTION-C

- Design a short column, square in cross section to carry an axial load of 2000 kN using lateral ties. Use M25 concrete and Fe415 steel.
- 8. Find the moment of resistance of a beam 250 mm × 600 mm deep if it is reinforced with 2-12 mm diameter bars in compression zone and 4-20 mm dia bars in tension zone, each at an effective cover of 40 mm. Assume M20 mix and Fe415 steel.
- Design a two way slab for the room 5.5 m × 6.5 m clear in size if the superimposed load is 5 kN/m². The edges of the slab are simply supported and corners are not held down.

IN-2-590 1