P-gfl No.

Total No. of Questions: 09]

[Total No. of Pages: 03

Paper ID [A0615]

(Please fill this Paper ID in OMR Sheet)

B. Tech. (Sem. - 5th)

DESIGN OF CONCRETE STRUCTURES - I (CE - 307)

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Section A is Compulsory.
- 2) Attempt any Four questions from Section B.
- Attempt any Two questions from Section C.

Section - A

Q1)

 $(10 \times 2 = 20)$

- a) Distinguish between 'Factor of rafety' and 'Partial Safety Factor'.
- b) Explain the necessity for specifying maximum and minimum tension steel in reinforced beams:
- c) Why do specification state that atleast 50 percent of the shear to be carried by steel should be in the form of stirrups?
- d) Define effective length of a column.
- e) Distinguish between the failure patterns of reinforced concrete short & long columns.
- f) What is equivalent shear as applied to torsion & shear in IS 456?
- g) What is meant by 'Dog legged staircase'?
- h) What is the minimum horizontal and vertical distance between individual bars of same diameter in a beam?
- i) What is the maximum diameter and spacing of reinforcement in two-way RCC slab?
- j) If balanced moment of resistance of a beam of width 'b' and effective depth 'd' is expressed as Qbd², find the value of Q for M 25 and Fe 415. Also give units of Q.

Download all NOTES and PAPERS at StudentSuvid

- Q2) Design a singly reinforced beam to suit the following data:
 - Clear Span = 3 m
 - Width of supports = 200 mm
 - Working live load = 6 kN/m
 - M 20 & Fe 415.
- Q3) Design the interior panel of a flat slab for a ware house to suit the following data:
 - Size of ware house 30 m by 30 m divided into panels 6 m by 6m Loading class 4.5 kN/m²
 - M 20 grade concrete and Fe 415 HYSD bars.
- Q4) Design the longitudinal and lateral reinforcements in a rectangular reinforced concrete column of size 300 mm by 500 mm to support a factored axial load of 1400 kN. The column has an unsupported length of 3 m and is braced against sidesway in both the directions. Use M 20 and Fe 415 HYSD bars.
- Q5) Design one of the flights of stairs of a school building spanning between landing beams. Data given is a school building spanning between Type of staircase: Waist and type
 - Number of steps in flight 12
 Tread = 300 mm, Riser 1,60 mm
 - Width of landing beams = 400 mm
 - Materials: M 20 concrete Fe 415 steel (HYSD).
- Q6) Describe the merits of Limit State Design method over Working Stress Method. Mention the assumptions made in Design based on Limit State.

Section - C

$$(2 \times 10 = 20)$$

- Q7) A rectangular R.C.C. beam is 400 × 900 mm in size. Assuming the use of M 25 and Fe 415, determine the maximum ultimate torsional moment the section can take if
 - (a) No torsion reinforcement is provided.
 - (b) Maximum torsion reinforcement is provided.
- E-353 Download all NOTES and PAPERS at StudentSuvid

Q8) Explain why IS codes do not insist on the condition [$L_d > M_1/V + L_o$] for negative steel at the interior support of a continuous beam. How does one checks the anchorage length of bars in the interior support?

Indicate the three cases regarding position of neutral axis in the design of

- T beams.

 (b) Determine the area of steel required in a T beam with the following dimensions for an ultimate moment of resistance of 450 kNm. Depth of
 - dimensions for an ultimate moment of resistance of 450 kNm. Depth of slab = 120 mm, breadth of flange = 700 mm, breadth of web = 300 mm, total depth 550 mm. M 20 and HYSD Fe 415 are used.

Download all NOTES and PAPERS at StudentSuvi