Roll No.

24195

B. Tech. 4th Semester (Civil Engineering) Examination – May, 2011

STRUCTURAL ANALYSIS - II

Paper: CE-202-F

Time: Three hours]

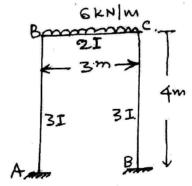
[Maximum Marks: 100

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

- Note: (i) Attempt five questions in all.
 - (ii) Question No. 1 is compulsory.
 - (iii) Attempt one question from each Section.
 - (iv) All questions carry equal marks.
 - (v) Assume suitable data wherever required or missing.
 - **1.** (a) What is the degree of indeterminancy of beam shown in the figure

(b) Calculate the Bending moment at the centre of a fixed beam of span L and a central load W.

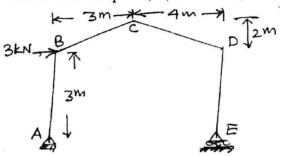
- (c) Where are anchor cables used and how?
- (d) Why a truss is assembled in a series of triangles?
- (e) Define Eddy's theorem of Bending Moment.


 $5 \times 4 = 20$

SECTION - A

- **2.** (a) Prove that the redundant reaction components of a statically indeterminate structure are such as to make the total strain energy stored up a minimum.
 - (b) How will you analyze and externally redundant structure for first degree of redundancy?

10 + 10 = 20


 Draw B. M. and S. F. diagrams for the portal frame shown below after completely analyzing it.

SECTION - B

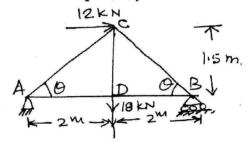
4. (a) Write short notes on (i) Parabolic arch and (ii) circular arch.

- (b) A three hinged parabolic arch of span 20 m has a central rise of 5 m. Find the rise of the arch crown if the temperature rises through 30° C. Take coefficient of linear expansion for arch material as 12×10^{-6} per degree centigrade.
- **5.** Draw the axial force, S: F and B.M. diagrams of a gable frame shown. Gable frame carries uniformly distributed load on span B, C, D as 1 KN/m.

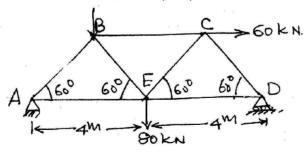
SECTION - C

- **6.** (a) Taking 5 = ax + by as the general equation for Bending Stresses mduced due to unsymmetrical, bending deduce the values of constants 'a' & 'b'.
 - (b) If a number of sections are taken along length of a beam, will the value of constants a' and b' in general equation a = ax + by differ firm section to section? Give reasons to support your answer.

10 + 10 = 20


7. (a) A cable supported at 120^m apart at the same level has a central dip of 12^m, carries a load of 20 KN/m of horizontal length. Calculate change in

horizontal tension when temperature rises thro' 20° F. Take $\alpha = 6 \times 10^{-6}$ per °F.


(b) Do stiffening girders transfer uniform distributed load to each suspender? Explain. 14 + 6 = 20

SECTION - D

8. Determine the forces in the truss shown below which carries a horizontal load of 12KN and a vertical load of 18KN at C & D respectively.

- 9. (a) Define deficient truss and perfect frame.
 - (b) Analyse the truss shown by method of tension coefficients or method of sections and determine forces in members AB, AE, and BE. 6 + 14 = 20

