www.studentsuvidha.in

B.E.
Seventh Semester Examination, 2010-2011
Compiler Design (CSE-405-E)

Mote : Attempt any five questions. All questions carry equal marks.

(. 1. (a) Differentiate between system software and an application software.

Ans, System Software and Application Software : System software is a computer soltware, that
is designed to operate the computer hardware and to give and maintain a platform for running the
application software, One of the most important and widely used system software are computer
operating system. It is with the operating systems, that parts of a computer are able 1o work 1ogether. This
system software performs tasks such as transferring data between memory and disks or rendering the
output onio display device.

An application software is a computer software, which is designed to help the user to perform
single or multiple related tasks. In other words. application soltware 15 seteally a subelass of computer
software. which emiploys the capabilitics of @ computer divectly and thoroughly o a task, which the user
wishes to perform, e.g.. ERP soltware. media player, Tally cle,

(. 1. (b) What is a translator ? Differentiate between compilation and interpretation.

Ans. Translator : Compiler is a program that reads a program writien in one lanpuage—source
language and translate it into an equivalent program in ancther language (larpet language).

Bisically translator transhute one language code Lo other tas per requirement) language code.

Compiler ¥s Interpreter : An interpreter translate some form of code into @ targel representation
that it can immediately exccute und evaluate. The structure of interpreter is similar to that of a compiler,
but the amount of time 1t takes o produce the execatable representation will vary as will the amount of
optimization. '

¥

Source vogde el codg Machme

1 | T

e Yeproceisiie —e ap—— Mogessing ———

Compilation

et e

cosgdy

! Sounce wode >

Y

Inrcrprocter ‘

|

- ey | FIRRER L el
SEE

o

Interpretation

(). 1. (c) Explain how different phases of compilation will operates and converts following
statement

position = initial + rate * 60
assuming data type of rate is float.

http://studentsuvidha.in/

www.studentsuvidha.in

Ans. Three address code consists of a sequerice of instructions, each of which has at most three
operands
temp | : = int to float (60)
temp 2 : =idy * templ
temp 3:=id, & temp2

idl t=temp3
position ; = initial + rate * 60
1
Lexical Analyzer
< 5’:&
id, ; =id, +ids * 60 ’
4

[Syntax Analyzer i

N

AT
- i
l Id}
Semantic Analyrer

S N
N

2 /-r\
idy int o Moat
|

Intermediate code generator |

http://studentsuvidha.in/

www.studentsuvidha.in

d
temp | : = int to float (60)
temp 2t =idy * temp |
temp 3:=id; * temp 2
id t=temp 3

!
[code optimizer
4
temp | :=id4 * 60.0
idy :=id; + templ
4
[cudr: gcneralcﬂ
i
MOV F idy. Ry
MUL F #60.0, R
MOV F idy. R,
ADDF Rs. R,
MOV F R,.id,

Symbol Table

1 [pusilion

mithal |

S —

Q. 2. (a} Define finite state automata (DFA). Write an algorithm to simulate to DFA.

Ans. DFA (Deterministic Finite Automation} : A DFA consists of following three things

(i) A finite set of states, one of which 15 designed as the initial state, called the starting state and
some of which are designed as final states.

(it} An input alphabet Z.

(iii) A transition system (Le., transilion graph, transition table that tells for cach state and each
letter of input alphabet, the stute 10 which 1o go next.,

Mathematically a DFA is given M =(Q, L. B, q,. F).

(1} @ 15 & Ninite non-cmply set of states.

{i1) £ 13 a finite non-empty set of input symbols,

{ii1) & is a transition system and e QP L= 0

(v} gy is an initial state and g, = Q

(v) F s asel of accepling states {or faal states) and F 0.

P S
I

http://studentsuvidha.in/

www.studentsuvidha.in

Let M =1(2. £, 8 gy, F)bhe a NFA accept. We construct ¢ DFA M that can also accept the same
language L.
M= Z8q . F)
0 =2 (power set of) and all states of Q" are denoted by [gy, ga . g1 - q,, | where

Qo tfy ooty €0
I = input alphabet
-fj’{;' =lgnl
F'=set of all subsets of @ containing an element of F
5" = transilon system)
Step I : Draw an initial vertex (state) with lahel g, 7ol transition diagram §°,
Step 2 : Take this state [gy, Jand identify all nextstutes from(on all different given input sy mhbals.
Step 3 : Take any state of step 2 and find new next state from @ on all different given input
symbaols.
Step 4 : Repeat step 3 until no new stales are generated,
Step 5 : Draw all states as a final states of 5716 it contain the final siawe of NFA,
Q. 2. (b) Construct the transition diagram for the following regular expressions :
(i} (ab*)*
(ii) ((a | byc*)y*®
(iii} (a | by*abh

Ans, (i) Step 1 : (b "
ns. (i) Step ::qﬂ @

Step 2 :

Step 3 :

http://studentsuvidha.in/

www.studentsuvidha.in

(if) Step 1 :

-—]-l“ ahie** .

Step 2 : —
@)
Step 3 :
) T ; @
{u'h}
Step 4 :

; b)
@
1
(iii) Step 1 :

I (u/hi* ahb @}

Step 2 :

@B @@

ﬂ
b

0. 3. (a) Check whether the following grammar is LL(1) grammar or not
5 — IEtSS | a

Step 3 :

F—eSle

E=b

Ans. S = iEI18% la
§oesle

E—b

http://studentsuvidha.in/

www.studentsuvidha.in

Non-terminal Input Symbol
i I h] [[i 1 %
% I - - f : R

5 S5—=a | S=iE

! Iﬁ?ir

I]
3 §=E E § =1
S—eS | S S

E E—b E |

Find first and follow, make the parsing table. I tuble contain multiple entries in a block, then
grammar is not LL{1).
So above grammar is not LL(L).
Q. 3. (b} (i) Give the Chomsky classification of grammars.
Ans. Chomsky Classification of Grammars : There are 4 types of prammars :
{iy (Typed) Unrestricted Grammar
(i) (Type 1) Context Sensitive Grammar
{iii) (Type2) Conwext Free Grammar
{iv) (Type 3} Regular Grammay
Type 0: A grammur is called an unrestricted grammar if it contains a contracting production rules.
It is also called recursive enumerable language.
Contracting Production Rule : A production rule, which is in the form of w,,, = w; where
Py 1= w
e, bo—b
lbel=2 1hl=1
Type 1 : A context sensilive grammar is a grammar in which each production contain a
non-contracting production rules.
MNon-contracting Production :
Production oa—f
lal<If|
Example : a=(|5,A}.{a}. P.5)
§—ad
ad — aad
ad — aa
Context Free Grammar (Type 2) : In a production ¢ A W — ¢ wy , string § and y both are
required to be empty. Thus, the possibility of replacing a non-terminal latter in a sequential form is
independent of adjacent symbols,
If grammar contain only one non-terminal symbol in left hand side, Type 2 grammar.
Example ; S—=A

A = gaA

http://studentsuvidha.in/

www.studentsuvidha.in

A=—ra

Regular Grammar (Type 3) : If grammar contain production either in right linear form or left
linear form.

Right Linear Form :
A—aB {lcrmin:ﬂ variable
A—a

Left Linear Form :
& Bia {vuriuhie terminul
A—a

Q. 3. (b} (ii) Give the highest type of following grammar, with explanation
S—=aS—=bB BA—-bA CA—= A

Ans. S—a type 3
B type 3 s¢ Type 1 Grammar

BA = bA type |

CA— A type 1

Q. 4. (a) Make left and right derivation using top down and bottom up strategy to derive a
statement
w = id + (id} + id* id using following grammar :

E-+E+E
E-E*E
E— (E)
E-id
Check whether the grammar is ambiguous for above statement.
Ans. w=1id + (id) +id * id
E—SE+E
E=E*E
E— (E)
E—id
Left Derivation Tree Right Derivation Tree

ST SN

/\ id T
B ® E/\r
i (E) L

id

http://studentsuvidha.in/

www.studentsuvidha.in

If any grammar has more than one parse tree then, grammar is amhiguous grammar so above
grammar is ambiguous.
Q. 4. (b) Explain the problem of left factoring and left recursion, How these problems are
remaoved.
Ans. Left Factoring & Lelt Recursion :
Left Factoring : Left factoring is a grammar transformation that is useful for producing a
grammur suitable fur predictive parsing.
s A= of lafl,
& contain two production, we cannol dentificd from Giest letler ol given production, for this
confusion we necd lefi factoring
A—od’
A" =iyt B
Left Recursion : It is possible for a recursive descent parser to loop forever. A problem arises with
left recursive productions like
CAPT — EXPI 4 [2rm
in which the leltmost symbaol on right side i< the same as non=termingl on the lefl side of production
A =expr, & = + ter, fi=term
50 A Aall
Left Recursion is recognized by sume symbol is present both side (left and right side).
For elimination of left recursion is
A — R
RsaRle
Q. 5. {a) Explain the working and algorithm of LIt parsers.
Ans. The schematic form of an LR parser is shown in fig. given following. It consists of an input,
an output, a stack. a driver program, and a4 parsing table that has two pans (action and gota).
The parsing program reads characters from an input buffer one at a time. The program uses a stack
to store a string of the form S5 Xy §; X5 8, ... X 8,,-8,, istopof stack. Each X is a grammar symbol
and each §; is a symhol called u state,

Input [| a; .. “n | 8
Slack g g |
m | LR parsing O -
Ko i sweary [Lutput
Sim-1
M- |
H Action | Goto
S

Model of un LR Parser

The parsing table consists of two parts, a parsing action function action and goto function goto.
The program driving the LR parser behaves as follows. It determines §,,, the state currently on top of

http://studentsuvidha.in/

www.studentsuvidha.in

stack and ¢; the current input symbol. It then consults action [S,, . a; | the parsing action table eniry for
state 5, and input ;. which can have one of 4 values :

(1) shif s , where 5 is a state

(ii} reduce by a grammar A —

{iii) accept and

(1) crio.

LR Parsing Algorithm :

Input : Aninput string w and an LR parsing table with functions action and goto for 2 grammar G,

Output : If w is in LIG), a boltom up parse [or w, otherwise, an error indication,

Method : Initinlly, the purser has S, un its stack, where 5, is the initial siawe, and w % in the input
buffer. The parser then executes the program until an accept or error action is encountered seti, to point
Lo the lirst symbol of w §;

repeat forever begin

let s be the state on top of stack and
a the symbaol pointed 1o by i,
if action [s, al = shift &' then begin
push a then " on top of stack;
advance i, 1o the next input symbol

end

else if action [s, a] = reduce A —+[§ then begin

pop 2 * 1Bl symbols ofT the stack;

let & be the siate now on top of stack,
push A then goto (s, A} on top of stack;
output the production & —

end

else if action [, a] = accept then

return
clse error)

end

Q. 5. (b) Explain how LALR parsing table is constructed. Explain with example,
reduce-reduce conflict.

Ans. Constructing LALR Parsing Table :

LALR — Loockahead LR parser

Input : An augmented grammar G’

Output : The LALR parsing table functions action and goto for G,

Method :

(1) Construct C = {1y [y, 1 |, the collection of sets of LR(1) items.

(it} For each core present among the set of LR(1) items find all sets having that core, and replace
these sets by their union.

http://studentsuvidha.in/

www.studentsuvidha.in

(i LetC = |1y, Jy,J , } be the resulting sets of LR(1) items. The parsing actions for state i are
constructed from J, in the same manner, il there is a parsing action conllict, the algorithm fails to
produce a parser and granunar is said not o be LALR(!).

(iv) The goto table is constructed as follows if J 1s the union of ene or more sets of LR(1) items;
thatis S = f; wl; WU g, then cores of gotody, X), goto (/5 , X),... goto ([, X) are the same, since
1y, ... 1 all have same core, Let K be umion of all sets of items having the same core as goto (), X) then
goto (J, X) = K.

Q. 6. (a) What is syntax directed translation schemes, explain how they are used to make
syntax Trees.

Ans. Syntax Directed Translation : A syntax directed defimition is a generalization of 2 CFG in
which each grammar symbol has an associated set of aitributes, partitioned inlo two subsers called
synthesized and inherited attributes of that grammar symbal,

In & syntux directed definition each grammar production A — o has associated with it set of
semantic rules of the form b:=f (¢, ¢ .0y) where fis 4 function and either.

(1} b is a synthesized attributes of A and ¢, 5 ... ¢y are attributes belonging to grammar symbols
of the production or

(it} & is an inhented attributes of one the grammar symbols on the right side of the production, and
€y, €3 «.. £ are attributes belonging to grammar symbols of production.

Example,
Production l Semantic Rules
L=E, il print (E.val}
E=E +T E.val : = E|.val = T.val
E=T E.val: = T.val
T->T;*F T.val: =T,.val * F.val
T—F T.val = Foval
F—=(E) F.val = Foval
F— dign l Foval ; = digit.lexval
L\
| .
foovaf= 10
I \
Eval 15 . T =4
G F. T‘LI =4
Wil = 15
4 \\ x Digit lexval -4
T yal =3 . Pyl =R
vl =3 Drigit- lexval = 5

Digit-lexval =3
Annotated Parse Tree for 3 * § + 4n

http://studentsuvidha.in/

www.studentsuvidha.in

Q. 6. (b) Create 3-address code for following expression
a+a¥(hec)+(b-c)*d
Ans. Three Address Code :

Quadroples :
a+a*(bc)+(b=c)*d
op argl I argl result
= ___..f _ b I' c 5]
" L | i 15
2 Ly il | L3
+ L5 ty | Ly :
L + Ly d ls E
Triple :
op argl] ar&__J
- b : & |
| * I o d
* | (0 ! i
+ (1) I (2)
| # 13 i

(). 7. (a) What are the typical entries in a symbol table, what are various data structures used
to implement the table. i

Ans. Symbol Table : An essential function of a compiler is 10 record the identifiers used in the
source program and collect information about various attributes of cach identifier. These attributes may
provide information about the storage allocated for an identifier, its type, its scope (where in the program
it is valid) and in case of procedure names, such things as number and types of its arguments, the method
of passing each argument and type returned if any.

A symbol table is a data structure containing a record for each identifier, with fields for attributes
of identifier. The data structure allows us w find the record for each identifier guickly and to store or
retricve data from that record quickly. When an identifier in the source program is detected by the lexical
analyzer, the identifier is entered inio symbol table,

Example, Pascal declaration

var position, initial, rate : real;

The type real is not known when position, initial and rate are seen by the lexical analyzer. The
remaining phases enter information about identifiers into symbol table and then use this information in

various ways.

http://studentsuvidha.in/

www.studentsuvidha.in

(). 7. (h) Explain various target for the code optimization.

Ans. Various Target for Code Optimization : When we optimize the code, must see the
following property should preserve .

(1) A transformation must preserve the meaning of programs. That is, an “optimization™ must notl
change the output produced by a program for a given input, of cause an error, such as a division by zero,
that was not present 1n original version of souree program.

(i) A transformation must, on the average, specd up progrioms by a measurable amount,

{111 A transformation must be worth the effort.

Q. 8. (a) How CPU registers are allocated while ereating machine code.

Ans. Register Allocation : Instruction involving only register operands are shorter and laster than
those involving memory operands, elficient utilization of register is important in generating good code.
There ure varioos stirategies for deciding what values in a program should reside in registers (register
allocation) and in which register each value should reside (register assignment),

One approach to register allocation and assigrment is w0 assign specific values in an object
program o certain regisiers, This approach has the advantage that is simplifies the design of a camplier.
Its disadvantage is that applied 100 strictly, it uses registers inefficiently cortain registers may go upused
uver substantial portions of code, while unnecessary loads and stores are generated.

MNevertheless, it is reasonable in most computing environments to reserve a few registers for base
registers, stack pointers and like and 1o allow the remaining registers (o be used by compilerus it sees fit.

The code gencration alperithm used registers to hold values for the duration of a single basic
block, However, all live vaniables were stored al the end of each block. To save some of these stores and
corresponding loads, we might arrange to assign registers to frequentiy used variables and keep these
registers consistent across block boundaries (globally),

Q. 8 (b) What are basic blocks and flow diagram, explain PEEPHOLE optimization
technigue.

Ans. Basic Blocks : Basic blocks can be represented by a variety data struciures. Each basic block
can be represented by a record consisting of a count of the no. of three address code in block, followed by
a peinter to the leader (first three address code) of the block and by the lists of predecessors and
suceessors of block,

Flow Graph : We can add the flow of control information to set of basic blocks making up a
program by constructing a directed graph called a Now graph. The nodes of flow graph are basic blocks.
One node is initial: it is block whose leader i5 first statement,

There is a directed edge from block B to block 8, if Bs can immediately follow B; in some
execution sequence; that is, if

(1) There is a conditional or unconditional jump from the last statement of B to the first statement
of 33 or

(ii) B, immediately follows B, in the order of program, and 8, does not end in an unconditional
jump.

B is a predecessor of 8,

B, is a successor of B,

http://studentsuvidha.in/

www.studentsuvidha.in

Progd 0 =11
i=i L]
v

=4

(three addross code
guin Bo

Flow graph

B, & B, are basic hlocks.

Peephole Optimization : A statement by statement code generation strategy often process target
code that contains redundant instructions and suboptimal construct. The quality of such target code can
he improved by applying “eptimizing”™” transformation to the target program. The term aptimizing is
somewhat misleading hecause there is no guaraniee that the resulting code is optimal under any

athematical measure,

A simple but effective technigue for locally improving the Largei code is pecphole technigee. a
method for trving o improve the performance of target program by examining a shon sequence of target
instructions (called peephole) and replacing these instructions by a shorter or faster sequence, whenever
possihle.

The peephole is a small. moviag window on the target program. The code in peephoie need not be
contiguous, alihough some implementations do require this peephole characieristic ;

(1) redundant instruction eliminaticn

(1) flow of control oplimization

(iii) algebraic simphfication

(iv) use of machine idioms.

http://studentsuvidha.in/

