www.studentsuvidha.in

B.E.

Seventh Semester Examination, 2009-2010
Compiler Design (CSE-405.E)

Nete @ Attemnpt amy ffre quastions. All questions carry equal merks.

0. 1. {a) What is a translator”? What is the difference between compiler and interpreter? What are
varicus phases in compiler censtruction?

Ans, Translator : Unce a programme has a piece of scurce code, he or she musi convert it into machine
code before the program can run on a computer. The job of converting source code into another program may
e chject codu of ransiaie.

" -ystem software that are used to translate the language from one language to another langnage are
calied the trans‘ators " The minin translators are ;

Assembler : An assembier is system software program used to convert lfow level language into the
mackine linguage.

Interpreter : This is alio » svstem software prosram used to convert high level language inta the machine
language.

Preprocessor @ A prup ocessor s s;stenn software pregram used to convert high level lansuage into
another high leve! language.

Compiler ; It is such a system software which converts the instruction given in high level language into
nrachine language.

Difference between a Compiler and an Interpreter :

i) In a compiler the complete 4ource program is translated and then transferred to C.P.L, while in an
imterpreter each instruction is translatzd and then transferred to C.P.U. for execution successively. It
means that each instruction is translated by the interpreter only afier the previous instruction has
bewn translated and ieceived by C.PA for executiva,

il Theobject program obtained from the compiler is saved penmanently for further use in future. This is
not possible in case of interpreter because the complete source program is not converted into object
prozram simultaneously.

(iii) Interpreter takes more time in the process of translation than a compiler. a

(iv} Itiseasy to write an interpreter program which also occupies less space in memory of the computer.

The Phascs of A Compiler : A compiler operates in phases, each of which transform the source program
from one representation to another.

http://studentsuvidha.in/

www.studentsuvidha.in

Source program

lexical Analyoer

Syntan Anmalyaer

Semantic Aualyzer

Intermediate coda Error Handler

gencratoer

Symbat rahle
niandeer

N
A

L

/TN

Code Optimizer

Code Generator

l

Target program

Phases af Compiler

Phase | : Lexical Analyzer : The lexical analyzer phase takes source program as an input and separates
characters of source language o groups that are Iogically togetter, These groups are known as tokens,

Phase 2 : Syntax Analyzer : The syntax analyzer phase is also known as parsing phase. It takes tokens as
input from lexical analyzer phase. 1 he vutput of this phase is parse trec,

Phase 3 : Semantic Analysis : The semantic analysiz ohase checks the source progrus for semantic errot
and gather type information for subseguent code generation phase,

Phase 4 : Intermediate Code Generatiou * The net phase of compiler is mtermediate code peneration, It
takes parse iree as an input from semantic phase & generates intermediate code. Generally a three address code
is generated. I

Phase 5 : Code Optimization : [t is an optianal phase designed to improve the intermediate code so that
the ultimate object program run faster and‘nr fakes Joss space.)

Phase 6 : Code Generation : [t 1s the final phase for compailer. it generates the arsembly code as target
language. In this phase, the address in the binary code is translated from logical address.

Symbol Table : A symbol is a data structure containing record for each identifier. with field for the
attributes of the identifier allow us to find record for each identifier quickly & to store or retrieve data from that
record quickly.

Error Handler : The error handler is invoked when a flow in the source program is detected,

(). 1. (b} Define deterministic finite state automata (DFA) Write an algorithm to simulate DFA.

Ans. Deterministic Finite Automata (DFA) : A detorministic finite automata (DFA) is a speciul case of a
non-deterministic finite automaton in which :

http://studentsuvidha.in/

www.studentsuvidha.in

(i) No state has on & ~ transition, i.e., & transition on input £ and

(it) For each state S and input symbol a, there is almost an edge labelled a leaving S,

A deterministic finitz automaton has at most one transition from each state on any input. If we are using
a transition table to represent the transition function of a DFA, then each entry in the transition table is a single
state. As a consequence, it is very easy to determine whether a deterministic finite automaton accepts on input
string, since there is at most one path from the start state labelled by that string.

Mathematically a DFA is given by
M =(8, £,8.q¢.F)

(i) & isa finite non-empty sct of state.
(i} ¥ isa finite non-empty set of input symbuls,
(iti) § isatransition systemand 8% = 8.

{iv) qp isan initial state and qq 0.

{v) Fisa set of accepting states (or final states) & Fcb.

Algorithm of Simulating a DFA : The following algorithm shows how to simulate the behaviour of a DFA
on an input string.

Input : An input string x terminated by an end of file character eof, A DFA D with start state S, and set
of accepting states F.

Output : The answer "yes" if D accepts x; "no” otherwise. The function move (S, C) gives the state to
which ihere is a transition from statz S on input character C. The function next char returns the next character
of the input string x,

E.'=Su|'
C:=next char;

while C = eol'do
S:=move(5, C)
o= next char;

end;

ifSisin Fthen
return "yes"

glse return "no”,

). 2. (a) What is the role of lexical analyzer in compilation process? What are lexemes and tokens?
Define regular expression and tell what the use of them is.

Ans, The Role of Lexical Analyzer : The lexical analyzer is the first phase of a compiler. its main task is to
read the input charactcrs and produce as output a sequence of tokens that the parser user for syntax analysis.
This interaction is commonly implemented by making the lexical analyzer be a subroutine or a coroutine of the
parser. LIpon receiving a "get next token™ command from the parser, the lexical analyzer reads input characters
until it can identify the next token,

Since lexical analyzer is the part of the compiler that reads the source text, it may also perform certain
secondary tasks at the user intertace. One such tab task is siripping out from the source program comments and
white space in the form of blank, tab and newline characiers. Another is correlating error messages from the
compiler with the source program.

http://studentsuvidha.in/

www.studentsuvidha.in

Sometimes, iexical analyzers are divided into a cascade of two phases, the first called "scaniing” and the
second "lexical analysis." The scanner is responsible for doing sitple tasks, while the lexical analyzer proper
does the more complex operations.

Tokens : There is a set of string in input for which the same token is produced as owtput, We treat tokens
as terminal eymbols in the grammar for the source language, using boldface names 1w represent tukens.

In most programming language, the following constructs are ireated as wokens © keywords, operatars,
identificrs, constants. Vieral strings and punctuation symhols such as parcathesis, commas and semicolons.

For exainple inthe Pascal Statement :

Constpi=3,1416,

The substrirg piis a lexeme for the token "identifier * 1a the examplz above, when the character sequen.e
pi appears in the soures program, a token representing an ientifier is returned to the parser. The returming of
a token iz often implement by passing an integer coreesponiiag to the token,

* Lexeme 1 A lexeme is a sequence of characters in the source pregram that is matched by the paitern fr
atoken, The lzxemes matched by the pattern for the token represeni <trings of eharazters 'n the source program
that can be tieated us a lezical unit,

Certain lanzuage conventions impact the difircuniy of lexical analysis, Langnage such as Foriran reguinc
certain constructs in fixad positions on the input line.,

Thus, tne aliganent of a lexeme may be unporiant in deiermining the correctness of a source proeram

Regular Expressions : Regular expressions are userul for representing cortain sets of sirings i 2n
algebraic fashion. In real tems these defing the language accepted by finite autonsaran,

We have the following definitions for regular expression :

(i Anyterminal symbol in ¥, including ¢ and ¢ are reguisr expressiens.

(i) Union oftwo regular expressions R and Ry, wristen R; - Ry, ie also a regular expression

(iiiy The concatenation of two regular expressions Ry and Ry written as RyRy 15 slse 2 regalar

expression.

{iv) The closure (or iteration) of 2 regular expression R is written as R® is also a regular expression.

{v) IfR isarcgulur expression then (R) is also a regular expression.

{vi) The regular expression over ¥ are precisely thuse obained by recursively applying rules 1-5 once

or several time,

(vii) Mothing else is a regular expression.

Regular expressions are used by many text editors and utilities (like in unix operating system) to search a
biock of text for cenain paiterns. e.g., to replace the found strings with some other sirings, So regular expres-
sions are useful for representing certain sets of strings in an algebraic fashion,

Q. 2. (b} Construct the transition diagram for the following regular expressions :

M (a*ib*)* @ ((ela)o*}*
. (il [llb}*lhb[n!b}*

http://studentsuvidha.in/

www.studentsuvidha.in

Ans. (i) (a*|b*)* :

i) ((ela)p*)* =

Q. 3.(a) Explain architecture and algorithm for the Non-Recursive Predictive Parser.
Ans. Non-Recursive Predictive Parser : This is a recursive descent parser which is implemented using

stack instead of recursive calls.
It is possible to build a non-recursive predictive parser by maintaining a stack explicitly, rather than

implicitly via recursive calls. The key problem during predictive parsing is that of determing the production to
be applied for a non-terminal.

INPUT al+ |b|$
X
Predictive parsing
stack | Y | S ——a OUTET
z
5
w
Parsing Table
M

Model of a Non-Recursive Predictive Parser

http://studentsuvidha.in/

www.studentsuvidha.in

A table-driven predictive parser has an input butfer. a stack, i parsing table and an output stream. The
input buffer containg the siring to he parsed, follow=d by §, a symbol used as a right end marker o indicate the
end of the input string. The stack coniains 1 sequence of grammar symbols with % on the buttons, indicating the
bottom of the stack. Initially, the stack contains, the start syrbol of the zrammar on top of' 8. The parsing table
is a two-diinensiona) array M[A, al, wher= A 15 ¢ non-terminal and @ is a terminal or the symbol S,

The parser is controlled by a prograni that behaves as follows. The program considers X, the symbol on
top of the stack, and u, the current input symbol. These two symbols determine the action of the parser. There
are three possibilities :

(i) - 1f X =a =8, the parser halts and announces successful completion of parsing.

(i) [FX=a 5, the parser pops X off the stack and advances the input pointer to the next input symbal.

(i) If X i= a non-ierminal, the program consulls cntry ll[}l,a] of the parsing tab!= M. This entry will be
either an X-production of the graminar or an error entry.
The behaviour of the parser can be described in teris of its configarations which give the stack contents
and the remaining inpul.
Algorithm : Mon-recursive predictive parsing.
Input ; A string W and a parsing table M for grammar G,
Output : IFW isin L[G], a leftmost derivation of W, otlierwise, an error indication,
Method : Initially, the parser is in a configuration in which it has $5 on the srack with S, the start symbol
of G on top and WS in the input buffer. The program that utilizes the predictive parsing table ™ to produce a
parse for the input. -
Set ip to point to the {irst symbol of W§,
repeag
let X be the top stack symbol and a the symbol pointed to by ip;
it X is a terminal or § then

ifFX =athen
pop X from the stack and advance ip
else error{)
else /*X is a non-terminal * /
itM[X,al =X = Y] Y3ourriomnrans .Yk . He begin pop X from the stack;
push Y., Yy_jorrennn . Y; onto the stack, with ¥, on top;
output the production X — ¥ Y. Y
end
else error()
until X =% f* stack is empty */

Q. 3. (b) Explain algorithm for the operaior precedence parser.

Ans. Operator precedence parsing technique was first described as a manipulation on tokens without any
reference to an underlying grammar. Once we finish building an operator-precedence parser from a grammar, we
may eflectively ignore the grammar, using non-terminals on the stack only as placeholders for zttributes
associated with the non-terminals.

http://studentsuvidha.in/

www.studentsuvidha.in

In operator-precedence parsing, we define three disjoint precedence relations, <, = and >, between
certain pairs of terminals. These precedence relations guide the selection of handles and have the following

meanings :

Relation Meaning

a<b a "yields precedencet™ b

a=b a "has the same precedence as" b
a=hb a "rakes precedence over" b

Algorithm of Operator Precedence Parsing :

Inpu

t : Aninput string W and a table of precedence refations.

Output : If W is well formed, a skeletal parse tree, with a placeholder non-terminal E labeling ail interior
nodes : otherwise, an error indication,
Method ; Initially, the stack contain % and the input buffer the string WS.

(i)
()]
(iii)
{iv)

(v)
{wi)
{wii)
{wiii}

(ix)
(xi)
(xi)
(i)
(i)

Q. 4.

set ip to point to the first symbol of WE.
repeat forever,
if § is on top of the stack and ip points to § then,
retum
else begin
let a be the top most terminal symboi on the stack and let b be the symbol painted to by ip;
if4 < bora= b then begin
push b ontu stack;
advance ip to the next input symbol;
end;
else ifa > b then/* reduce */
repeat
pop the stack,
until the top stack terminal is relaved by < to the terminal most recently popped.
else error()
end.
(a) Explain what are left recursion and left factoring and how to remove these problems. Way

should a grammar be free from these?

Ans.

Left Recursion : A grammay G (V, T, P, 5) is said to be left recursive ifit has a production in the form
A Ao/f

The above grammar is left recursive because the left of preduction is occurring at first position on the
right side of production.
It is possible for a reoursive-descert parser 1o loop forever. A problem arises with left recursive produc-

tions like.

BXPL« —b EXpr-+ term

In which the leftmost symbol on th e right side is same as the non-terminal on the leftside of the produc-

tiom,

http://studentsuvidha.in/

www.studentsuvidha.in

Left Fuctoring : Lefi factoring is a grammar transformation that is useful for producing a grammar suitable
for predictive parsing.
A grammar G is said to be lefl faciored if any production of it is in the form of

A= o/ ay
i.e.. on the right side of production initally o is present as first symbol in both.
The hasic idea is that when it is not clear which of two altemative productions to use (o expand, a

non-lerminal A, we may be able to rewrite the A-productions to deftr the decision until we have seen enough
of the input to make the right choice.
For example, if we have the two productions
stmt—» ifexprthen stmt else stmt
! ifexpr then stmt
On seeing the input token if, we cannot immediately tell which production to choose to expand stmt, In
general, if A —» afy; /apa are two A-productions and the input begins with a non-empty string derived from
a , we do not know whether to expand A 1o off, or up; . However we may defer the decision by expanding A
to @A’ Then afler seeing the input dersved from w, we expand 40 Lo B, orto B; . That's, lefi-fuctored, the
original productivis becona,
A oA
A= By /By
Elimination of Left Recursion ; We can eliminate left recursion by replacing a I;air of production with
A= JA
A= A Ve
The general form fur left recursion

A= Ay AG e (10 T 1Y 2 R |

will be A = BAYBoAY...... BuA' and A'— eyA'jopAY............. o Alle

Algorithm : Eliminating lefl recursion.
Input : Grammar G with no cycles or g productions.
Output : Anequivalent grammea with no left recursion.

Method :
(i) Arrange the non-terminals in same order Ay, As ey A
{it) Tori:=1tondobegin

forj: =1 o i~j do begin
replace each production of the form A; =AY by the productions

A; <387 /837 oo, I8y - Where Aj = 81[83].........|8

http://studentsuvidha.in/

www.studentsuvidha.in

are all the current A j-productions;

end
eliminate the immediate left recursion among the

A — productions

end.
Elimination of Left Factoring ; The lefl factoring can be removed by expanding A — A’ . Then after

secing the inpus derived from a, we expand A'to § orto ¥, Henee, the productica will be
A —= oA’
A= iy
Algorithia @ Eliminaton of left factoring.
Input : Gramnar G,
Outpui : Anequivalicnt grammer with no left factoning
Method : Foreach non-terminal A find the Jongest prefiy o common ro oo o mose of its allernatives. If
o £, e, there is anen-trivial common prefix, replace ali the & productions A — ofbjaB|o.... lefd 'y
whees ¥ orepresents ull aliernatives that do not begin with a by,

A ~r oAy
N L1} L7 e— B,

Here A' 15 @ new non-terminal. Repeatedly apply this transformation until no two alternatives for a non-
terminal have a cecmmon prefix.

Top-down parsing methods cannot handle left-recursive grammars as well as left factoring grammar, 504
transformarion that eliminates them is required.

Q. 4_(b) Explain the working and algorithm of LR parser.

Ans. LR Parser : An efficient, bottom up syntax analysis technique that can be used to parse a large class
of context free grammars, The technique is called LR(K) parsing; the “L" is for lefi-to-right scanning of the
input, thz "R" for canstruction a rightmost derivation in reverse and the K for the number of input symbols of
lookahead that are used in making parsing decisions. When (K) is omitted, K is assumed to be |. LR parsing is
attractive for a variety of reasons ;

(i} LR parsers can be consiructed to recugnize virtually all prograimming language constructs for which
context free prammars can be written.

{i) The LR parsing method is the most gencral non-backtracking shift reduce parsing method known,
yet it can be implemented as efficiently as other shift reduce methods,

(i) The class of grammars that can be parsed using LR methods is a proper superset of the class of

grammars that can be parsed with predictive parsers.

http://studentsuvidha.in/

www.studentsuvidha.in

(iv) An LR parser can detect a syntactic error as soon as it is possible to do so on a left-to-right scan of
the input.
The wehematic form of an LR parser is shown in fig.

Input | 8] Jeceeea e 2, 5
h
Sm = LR
Stack | X, | parsing program{———> Output
Sm- 1
Xm-1
i action | goto
50
Meodel af an LR Parser

It consists of an input, an output, a stack, a driver program and a parsing table that has two parts (action
and goto). The driver program is the same for all LR parsers; only the parsing table changes from one parser to
anothcr. The parsing program reads characters from an input buffer one at a time. The program uses a stack 1o

store a string of the form §;X,8;%,8,....... X Sy » Where S, is on top. Each X; is a grammar symbol and
each 5; is a symbol called a state.

The parsing table consists of two parts, a parsing action function and "aciion" and & goto function
"gota".

All LR parsers behave in the fashion given in algorithm; the only difference between LR parsed and
another is the information in the parsing action and goto fields of the parsing table.

Algorithm : LR parsing algorithm

_ Imput : An input string W and an LR parsing table with function action & goto for a grammar G.
Output : If W is in L{G), a bottom-up parse for W; otherwise, an error indication.

Method : Initially the parser has S on its stack, where S is the initial state and WS$ is to input buffer. The
parser than executes the program until an accept or error action is encountered,

(i} setip to point to the first symbol of W§;

(1) repeal forever begin.

(iii) let S be the state on top of the stack and

{iv) athe symbol pointed to by ip;

(v} ifaction [S| a] = Shift §' then begin

{vi) pushathen 5' on top of the stack;

{(vil) advance ip to the next input symbol,

(viil) end

(i) Elseif action [S, a]=reduce A —» [} then begin

http://studentsuvidha.in/

{di)
ixi)
kil
(xiif)
[xiv’
(xv)

{xvi)

www.studentsuvidha.in

pop 2*B] symbols off the stack;

let 5" be the state now on top of the stack;
pish A then goto [$, A on top of the stack;

vutput the production A -

else if action [S, 4] = aczept then

{xvii} else error()

(i end

). 5. Construct the LR (0)) parsing table for the following grammar :

5= L=R
SR
L=2*R
L=id
R->L

Is this grammara LR(0) grammar.
Ans, The augmented grammar for above grammar is

5'—85
S—sL=F
5 +R
L—»*R
L—=id
R=L

The canonical collection of sets of LR{D) items for grammar as follows :

Iy

8'=85
S-»eR =N
SR
L-»e*R
L—»-Id'
R el
535
Raale=R
B—Le
S—Re

http://studentsuvidha.in/

www.studentsuvidha.in

Ig: L—s*eR
F —» sl
L-—+e*R
L —eld

| P L=-3id

IE" S= L=k
R el
L.—» " K
L —=ld

|r_r= L—+*Re

IE: -l

Iy: S—aL=Re

The follow are given below :
Follow (S1= {8}

Follow {L}= {= §}
Follow (R)= {=.§]

The parsing table for above granunar is as given below ;

State Artion “Gnto
id N T $ S L R
0 S5 S ! 2 3
1 acce -
2 56 rg rs
3 r T
4 S5 S4 g 7
T T 0 o alaw |
5 S 5. 5 9
7 Tt e s ‘
; i 4 .:;_- A r:._ e e]
9 n

Multiple defined entiy which shows 2 shift raduce ecnflict. Thiz conflict anscs fram the fact that SLR
parser construction method i. net powerful enough to remember enough left context to decide what action

parser should take on input.

http://studentsuvidha.in/

www.studentsuvidha.in

Yes, this grammar is a LR{O) gramman.

Q. 6. (a) What is syntax directed translation, why are they important?

Ans. Syntax Directed Translation : We know that every programming language conrains the constructs.
It is very important to kaow the rules of translations of the programming constructs Whanever a construct is
enceuntered «n programming language, it 1s evaluated/ranslared according to semantic rules defined in that
particular programming language. The translation may be generation of intermediate code, object code or
adding the information in svmbol table about constiucts type.

The modern compiler uses the svitax directed translation that makes user's life easy by hiding many
implementation details and free the user from baving 1o speeify explicitly the order i which semaqciic rules are
to be evaluated, The trarslatiun of teken strearas iake placs by ovaluating the seinantic rule,

Thete is a notatioral framework for irteraedizic ~ode generetion that is the extension of context free
grarmmars, This framewosk is called syntax directed tansiztion. I al'ows subrovtines or semantic action 1o be
atiached ta the prodactiors of & context free grammar. These subroutines generates intermediate code when
called at anproneiate imes by a parser for that grammar.

The hasic stroctures for syntax-directed translation is given below @

Lexical Anaiysis

!

Token Stream

!

Swntax Analysis

)

Carse Tree
i
|- Semantic Analysis
I Dependency Graph
Syntas | : 'l :
directed | Evaluation oder for semantic rules

tranzlation

J

Translaticr ~F copstructs

The syntax directed translution s partitioned into tv'c subset called the synthesized and inherited.

(i) Synthesised Translation : It defines the value of translation of the non-terminal on the [eft side of the
production as a function of the translation of non-terminals on the right side i.e,, left is dependent on right.

el {E.vat:= EW.vat+ %), vai]

(i} Inherited Translation ; Translation of a non-terminal on the right side of the production is ¢~ fined in
terms of a transiation of the nop-terminal on the lefl i.e., right is dependent on |eft,

http://studentsuvidha.in/

www.studentsuvidha.in

A= XYZ [‘r’.va!:=q*h.ua1]

Y which is on right side is dependent on A, which is on left.

The syntax directed translation is important because it enables the compiler designer to express the
generation of intermediate code directly in terms of the syntactic structure of the source language. This allows
subroutinzs or 'semantic actions tc be ataached with context free grammar. This enable the compiler to gencrate
intermediate code on the fly with the syntactic structure.

0. 6, (b) Create the syntax tree and DAG for the following expression,

ava*(b-c)t{b-r)*d
Ans. Syntax Tree:
a+a*(b-c)+(b-c)*d

/ \

n /\/\ .

DAG (Directed Acyclic Graphs) : A directed acyclic graph (DAG) for an expression idestifies the com-
mon subexpressions in the expression. Like a syntax tree, a dag has a node for every subexpression of the
expression; On inferior node represent an operator and its children represent its operands. The difference is
that a node in a day representing a common subexpiession has moie than one "parent” in a synlax tree, the
common subexpression would be repiesented as a duplicated subtree.

a+a*(b-cj+(b-c)*d

P
P

+/’

-

Ll
-

o

K//\,\\

C
Dag for the expression a+3*{b-c)+(b-c)*d.

http://studentsuvidha.in/

www.studentsuvidha.in

. 7. {a) What is a symbol table, what are various data structures used to impiement the table?

Ans. Symbo! Table : A symbol table is 2 data structure used by a compiler to keep track of scope, life and
hindins infermation about names, These names are used in the source program te identify the varicus program
elements, like variables, constant, procedures, and the labels of statements. The symbol table is searched every
time a neme is encountered in the source text. When a new name or new information about an existing namie i
discovered, the content of the symbaol table changes. Therefore, a symbel table must have an efficient mecha-
nism for accessizz the information heid in the tables as well as for adding new entries to the symbeol tahle.

In any case, the symbel table is a uzeful abstraction to sid the compiler to asceriair nd verify the
cemantics or meaning of a piece of cade. 1t will keep track of the names, types, locations 2ad prorerties of the
wymbals encovmered in the program, The typs system and the code gereration system rely cn the symbels
encountered elsewhere in the code. 1t makes the compiler mores «fficient, since the file doesn't need to be
reparsed to discover previonsly processed information. For efficiency, our choice of implementing daia struc-
ture for the symbaol table 2nd the organization of its content should stress on minimal cost when adding new
entries or accessing the information of existing entries. Also, if the symbol table can grow dynamically as
needed, then it is more useful for a compiler. :

For example, if defining a variable like

int X

then the name of the varizhlz, a'eng with its type is nserted in the symbaol table.
|

[
X i

1
I

We have following data stractures available to construct symbol table

(i} Lingar lists

(i) Trees

{iii) Hash tables. :

Each has its own difficulty of implementation and efficiency. Linear lists are simple and easy to implement
but slow due 10 lots of pointer adjustment needed for deletior, insertion. Trees are intermediate in power
between linear hsts and hash tables, Hash tables are quite fast in locating an element, but require more
programming effort and space.

(i) Lists : This is simple and easy to implement data structure for symbol table. We can use single array
or sequence of arrays.

To insert a new name we scan down the list to search whether it is there or not. If it is not there new name
in the words immediate following AVAIL is stored and AV AlL pointer is incremented to new space.

Mame |
Tnto !

Mame 2

Irfo 2

A Mamez n
Infon

AVALL—>

http://studentsuvidha.in/

www.studentsuvidha.in

The efficiency is O(n-l) , it is the time taken to search and insert a record.

Self Organising Lists : At the cost of some exira space we can expedite the search process using LINK
field, This field points to next record in sequence, whenever a new record is inserted, it is inserted at the

beginning of list with little adjustment of pointers,

IRST represent first item of symbol table

namie |
data 1
link 1

nime 2
data 2
link 2

name 3

JTESY data 3

link 3

data 4
link 4

namie 4

AVAITL
5

—

mame |
data 1
link 1

name 2
data 2
link 2

FIMNAL
—_—

name 3
data 3
link 3

name 4
data 4
link 4

AVAIL
—_—

Order is - Name 3, Namel, Name 4, Name 2

FIRST —

Mame 3

» Name?2

Mame 4

k.

Mame |

Mewly inserted at available

V

spuce with previous pointer
directions.

FIRST —=>

Mame 4

MName 3

Mame |

k

Mame 2

Name 4 moves Lo first position

(i} Search Trees : We have studied binary search trees in data structures in which point node is greater
than the left child and smaller than right child We know that birary tree has height log | therefore. maximum

time to search and insert a nade is O{log,,) -

http://studentsuvidha.in/

www.studentsuvidha.in

Q
() (39

. ® O @

whilep = NULLdo

IFNAME = NAME (P) then
return true

else FNAME <NAME (P} then
B:=LEFT(P)

else
P:=RIGHT (F)

{iii) Hashing : This s the method of converting S}mb_nls, the indexes of entries into symbol table. g.,.ﬂ
to n—1. The index is obtained by hashing the symbol i.e., performing some arithmetic or logical operations on

symbol, In hashing the search, insert or delete operation takes 8{n) time if the data are searched linearly and

theré are n items stored in records, Hashing i< a technique which dirsctly refers to the memory location where
the data is stored and data can be found in 0(1) time, this is tremendous improvement over other data structure
of symbol table. The functions which calculatethe position of records is called hash function and records are

stored in hash tables. There is a key associated with each record.

1 100
2 200
3 300
4 400
5 500

I

I

[

|

|

i’
0 1000

Suppose we want to find the key value 400. We can directly refer to it using some hash functions that

calculates its location.
1 (400) =400 DIV 100 =4

http://studentsuvidha.in/

www.studentsuvidha.in

Thus, duta is located at 4th position. This takes 8(1) timie to find the key value.

Q. 7. {b) Fxplain various target ‘or the code optimization.

Ans, The process of optimization is aimed atimeroving the execurion eificiency ofa program. Ontimiza-
tion aims mainly at rearranging the computation in & program so as to gain the advaniage of executin speea
without chungine the meaning of a program. So rinally we can say thas code cptimizancn nefess 1o the technigae
used by the commiler to improve the execution efficiency of the generated object code.

The basic work of compiler is to take source code as inpul £ produce obiect code/target code a3 ouwput

The code generated by intermediate code generator may not be efficient as it should; for example, it is
using tempotary variables. Therefore it is the respoasibility of code optimization phasc to generate the code
which should be efficient on machine. The efficiency is defined in terms of time & =pace taken by a computer
program 1o nroduce the desired output,

The cade optimization refer to the technigues used by the compiler tw improve the execution efliciency of
generated object code, It involves a complex analysis of intennediate code & per forms various transtormatic s
but every optimiziag transformation must alse preserve the semantic of the prograr. That is, a compiler ~hould
not atiempt any optimization that would lozad to a change in program's semzntics,

Optimization can be machine depend=at or .nach:..e independent. The maching independen: outinvza:
tions can be performed independenily of the target machine for which the compiler is generating the code i &,
the optimization arc not tied to the target maching's specitic plavtorm or languuge.

Examples of machine independent oplimi zation are :

{(iy Elimination of loop invariant computation

(i) Inductivn variable elimination

(i) Elimination of commen sub-expression.

On the other hand, machine-dependent optimization require knowledge of target machine. An attempt to
generate object code that will utilize the target machine regisiers more efficiently is an example of machine
dependent code optimization, :

Actually, code optimization is misnames (i.e., not actually as the name says), even after performing
various optimizing transformations, there is no guarantee that the generated code will be optimal. Hence, we are
actually performing code improvement. When attempting any optiinizing transformations, the following criteria
should be applied :

(i) The optimization should capture most of the potential improvements without an unreasonable amount

of efforts.

(i) The optimization should be such that the meaning of source program is preserved.

(iiy The optimization should, un average, reduce the time and space expended by the object code.

The code optimization is divided into two parts :

(i) Loopoptimization

(ii} Data Flow Analysis

(i) Loop Optimization : Looping plays an important role in any programming language. Loop plays an
important role in the optimization because loop is a place where compiler spend bulk of its time. The running
time of a program may be improved if we decreases the number of instructions in the loop. There are three
important techniques for foop optimization. They are :

(i)} Code motion

http://studentsuvidha.in/

www.studentsuvidha.in

{ii} Induction-variable elimination
{iii) Reduction in strength.
{i") Data Flow Analysis : To optimize the code efficiently compiler collects the information about the

programs as whole and distribute this information to each block of the flow graph. This process is known as
data flow analysis. To get the data flow information we deiine certain data flow equations and solution of those

equation gives the data-flow information,
Data-flow-equations;
A typical equation is,
Oui[B]=(In[B] -kill [B] v gen]B] A1)
where : B 1 is basic block.
gen[B] . The set of all the definitions generated in block B,
Kill[B] : The set of ail definitions outside black B that define the same variable as are defined in block B.
int[B]}: vr out[P], where P is predecessor of B i)

Equation (i} & (ii} are data flow equations, _

Q. 8.{4) List the various types of intermediate code, explain 3 address code in detail,

Ans. Iniermediate Code : Imermediste codes are machine independent codes, but they are close to
machine struetions. The given program in a source language is converted tc an equivalent program in an
intermediate lanpuage the intermediate code generaor,

Irtermediate language can be many différent language and the designer of the compiler decides this
intermediate lunguage.

(i} Syntax trees can be used 4= an intermediate languags.

(i} Postiix notation can be used as an inermediate fanguage

{1ii) Threz-address code can be used as an intermediale language.

{i) Syntax-Trees : A syntax tree speciiies the wanslation of a construct in terms of attributes associated
with its syniactic components. Syntax tree are used to specify many of its translation that takes place in the
front and of'a compiler.

(li) Postfix Notation : The postfix notation for an expression E can be defined inductively as foliows :

{i) IfE isa variable or constant, then the postfix notation for E is E itself.

(i) IfE isanexpression ofthe form E; & E, ; where op isany binary operator, then the postfix notation

tor Eis E; E5 op, where E'] and E';_ are the postfix notations for E; and E; respectively.

(iiiy ITE is an expression of the form (E;), then the postfix notation for E| is also postfix notation for E.

Three-Address Code : Three-address code is a sequence of statement of the general form
X:i=YopZ
Where x, y & z are names, constants or compiler-generated temporaries; op stands for any operator, such
as a fixed-or floating-point arithmetic operator or a logical operator on boolean-valued data. Note that no built
up arithmetic expressions are permitted, as there is only one operator on the right side of a statement. Thus, a
source language expression like x+y*z might be translated into a sequence.

ty:=y*z

http://studentsuvidha.in/

www.studentsuvidha.in

=%+t

Where t; and 1y are compiler-generated temporary names. This unraveling of complicated arithmetic

expressions and of nested flow-of-control statemenis make threc-address code desirable for target code gen-
eration and opumization. -

Three-address code is a linearized representation of & synlax tree or a dag in which explicit names corre-
spond to the interior nodes of the graph.

The reason for the term "three-address code™ 15 that eacn statement usually contains three addresses.
two for the operands and one for the result. In the implementations of three-addresses code, a programmer
defin=d name is replaced by a pointer 1o a symbol-table entry for that name

a:=b*-c+b%-¢

Syntax Tree:

/\ V2
i 4 \o
b/ \T "'/\[

g
c e |
c
tyi=-c ti=-¢
thi=b*ty ty:=h*t
t3:i=—c tsi=tz +13
tyr=b*1; a=tg
lgi=13 +1ty
a:ts ' Code for the dag
Code for the syntax tree

(). 8. (b) What are basic blocks and flow diagram, explain PEEPHOLE optimization technique.

Ans. Basic Blocks : A basic block is a sequence of consecutive statements in which flow of control
enters at the beginning and leaves at the end without halt or possibility of branching except at the end.

Or e can say A basic blocks is a sequence of statement that enters at the start and ends with a branch
at the end,

The following sequence of three address statements forms a basic block :

tji=a*a

http://studentsuvidha.in/

www.studentsuvidha.in

ty:=2"%1,
tg:=ty+13
tsi=b*b '
lgi=1g +15

A basic block computes a set of expressions. There expressions are the values of the names live on exit
from the block. Two basic blocks are said to be equivalent if they compute the same set of expressions.

Flow Diagram ; It is used to portray the basic blocks and their sucvessors by a directed graph. The nodes
of the flow diagram or flow grarh are the basic blocks. Ore node is distinguished as initial : it is the block, whose

leader is the first statemeant, Theic is & direc'ed edge from block By te block By if By canimmediately follow
B, in some execution sequence; that is, if.
(Y Here is 2 conditional or uncenditional jump from the lost statement of’ By to the first statement of By
or. =
(i} B, immediately follews B, in the order of the program and By does not end in an uncondit:onal
Jump.
We say that By is a predecesser of B and By is a successor of B,
Pecphole Optimization Technique : A staiement-by-statement code generation strategy often produces
target code that contains redundant irstructions and suboptimal constructs.
A simple but effective technigue for locally improving the target code is peephole optimization, 8 method
for trying to improve the performancs of the target program by examining a short sequence of target instruction

{called the pecphole) and replacing these instruchion by a shorter or faster saquence, whenever possible. This
technigue can also be applied direcily after int>rmediate code generation to improve the int2rmediate represen-
Lation.

The peephole is a small, moving window on the target program. The code in the peephole feed not be
contigucus, although some implementations do require this.

It is characteristic of peephole cptim:zation that each improvement may spawn opportunities for addi-
tional improvements. In general, repeated passes over the target code are necessary to get the maximum
benefit.

Following are the examples of program transformation that are characteristic of peephele eptimizations |

(i) redundant-instruction elimination

(i} flow-of-control optimizations

(i) algebraic simplifications

{iwviuse of machine idicms.

{i) Redundant Instructicn Elimination : One of the opportunity for peephole optintization is the removal
of urreachable irstruction, An unlabeled instruction immediately following an unconditional jump may be
removed. This operation can be repeated to eliminate a sequence of instructions. For example : For debugging
purpase, a large program may have within it Certain s2gments that are execoted only if a variable debug is |,

(i) Flow-of-Control Optimization : The intermediate code gencration algorithm frequently produce jumps
to jumps, jumps to conditionzl jumps or conditional jumps to jumps, These unnecessary jumps can be elimi-

http://studentsuvidha.in/

www.studentsuvidha.in

nated in either the intermediste cod= or the target code by the peephole optimization.

(iif} Algebraic Simplification : There is nc end to the amount of algebraic simplification thar ca. “.
attempted through peephele optimization. However, only a few algebraic identitics occur frequently enough
that it is worth considering irvplementing them.

For example, statement such as,

X:=X+0
Or
Xi=X*|
are ofton produced by straightforward intermediate rode-generation algorithms and they can be eliminated
eastly through peephole optimization,
{iv) Use of Machine Idioms : The target machine may have hardware instructions to implement certain

specific operations efficiently. Detecting situgtions that permits the use of these instructions can reduce
execution time significantly.

http://studentsuvidha.in/

