www.studentsuvidha.in

BIE- |
Seventh Semester Examination, May-2009
Compiler Design (CSE-405-E)

Note : Attempt any FIVE questions. All questions carry equal marks

(. L. {a) What is a compiler? Write Short note on LEX tool,

Ans. Compiler : Compiler is a sofiware which takes as input a source program in high level language &
produces the sequence of machine code instructions as outpul.

NOUMCE eyl Cgmipiler e
Pragriun Machine code

Lea Tool : LEX s a parser generator tool. It is basicaily a program thar gencrates the lexers LEX 13
commuoniy ased with the vace parser generator. LEX, originally written by mike lesk, is the standard lexical
anabveer on UNEX systons. Lex reads an input file specifying the lexical analyzer and outpus code implement-
ing the lexer i the C prozramming language,

Q. 1. (b) Define a non-deterministic finite state automata (nDFA). Write an a'vorithm to simulate nDF A,

Ans. Non-Deterministic Finite Autorata : NFA isa S-wple (Q. £.5,q4.F) where,

(i) Qs finite non-comply set of siates.

(i) % is finite non-empty set of inputs

{iii} § is atansition function mapping from Q = L o 24 which s power set of Q, the set of all subsets

of (.

{iv) gy =0 isthe initial state and

{(v) Fc0Q isthe set of final states,

Alzorithm for sumulating NDP A
P=5;
While (input not empty)
- |
scan (c);

T=4;
For(each A(g.c) where g ep)

http://studentsuvidha.in/
http://studentsuvidha.in/

www.studentsuvidha.in

T=TwAlq. ¢}:

it (Tod)
reject:
P=T

5
i

accept iff (P F=¢):
Algorithm for simulating NFA with < - transitions
P=35;
while {true) |
do |
T=P
Forieach Alu.e] where qepl
P=Puwilg.g),
¥
]
while {T # P);
if {input empty)
break:
). 2. (a) What is the role of lexical analyzer in compilation process. Define regular expression and give
steps to convert a regular expression into a non-deterministic finite state automata.

Ans, Role of Lexical Analyzer : Lexical analyzer acts as an interface between the input source program to

be compiled and the later stages of the compiler. The input program can be considered to be a sequence of
characters. Lexical analyzer converts this character stream into a stream of valid words of the language, better

known as tokens,
Regular Expression ;

(i) Any terminal symbol in ¥, including e and ¢ are regular expressions.

(i) Union of two repular expressions Ry and Ry written R + Ry is also a regular expression.

(i) The concatenation of two regular expressions Ry & R, wrilten as R R, is also a regular
expression.

{iv} The closure of a regular expression R is written as R is also a regular expression.

{v) IfRisaregular expression then (R) is also a regular expression.

Steps to Convert Regular Expression to NFA:

(i Convert a state transition between 1wo states for each input of Le.,

http://studentsuvidha.in/
http://studentsuvidha.in/

www.studentsuvidha.in

(i) a+hora’bcan be thought of OR or a parallel circuit can be converted as follows :

i) lnersection ab can be thoughe of serics circuit cai be converted to MFA as below :

Oa Cm)hq®
DD OO

iiv) Closure can be convened to WNFA as a*

Q. 1. (b) Construct the transition diagram for the following regular expressions.
(i) (ab*)* © (i) {{ajb)c*)*
(iii) (alb)*abb

Ans. (i) (ab®)* :

http://studentsuvidha.in/
http://studentsuvidha.in/

www.studentsuvidha.in

(ii) ((alb)e™)™ =

(iii} (alh)*abb :

Q. 3. (a) Explain the algsrithm for the Recursive Predictive Parser.
Ans. Procedure meatch (1. woken);

hegin

if lookhead = t then

lookahead ; = next woken

else error

end;

procedure Lype;

bezin

iflookahead is in {integer, char, num} then

simple

else if lookahead = v then begin

match (<): match(id)

end

else if lookahcad =array then begin

. matchiarrayy; match (') simple: mateh (']'); mateh (of); tvpe
end

http://studentsuvidha.in/
http://studentsuvidha.in/

www.studentsuvidha.in

else error
end,;
procedure simple;
begin
it lookahead = integer then
mnatch {integer)
else if lookahead = char then
match {char)
else if lookanead = num then begin
match {num): match (dot dot); match {num}
end
else error
end;
Q. 3. (b) (1) Give the Chomsky classification of grammars,
Ans., Chomsky Classitication of Gremmar 1 Chomsky classitied grammar into four catcgories
type - type 3)
Type 0 : Phrase structured or unrestricted grammar production form
a=—=f

Where a,pe(VyuT)’
Type 1 : Context sensitive grammar,
If production is of the form
Ay - pay
Where, b.w e(VyuT)*
A eVy

ae{VyuT)'
a#e

Type 2 : Context free grammar also sometimes called backus Maur From (BNF). In this grammar there is no
left or right context restrictions & productions are of the form

A—a
AeVy
. - ae(TuVy)*
Type 3: Regular G‘Fli mmar : A grammar in which production is of the form
A=—a
A -»aB
Where, A.BeVy

http://studentsuvidha.in/
http://studentsuvidha.in/

www.studentsuvidha.in

aeT
. 3. (b)(ii) Give the highest type of fullowing grammar, with explanation :
S3a.5bB.BA->bA,CA— AB.

Ans, S5—+a/bB
BA — bA
CA— AB
(i) 5-—sa
Itisof type 0
(ii) 5—bB
Itisof type 3
{iii) BA — bA
Iris of type |
{iv) CA — AD
It is of rype O

S0, highest type is 2ero.
0. 4. (a) Make left and right derivation using Lup down and bottom up strategy to derive a statement
w = id + (id+id)*id using following grammar
E-*E+E
E=SE*E
E—(E)
E—id
Check wheiber the grammar is ambiguous.
Ans. E—-E+E
E-+ExE
E—(E)
E—id
Using Top-Down
E—=E+E
E-»id+E
E-»id+E*E
E-»id+(E)*E

E—id+(E+E)*E
E—id+(id+E}*E
E - id+(id +id)*E

http://studentsuvidha.in/
http://studentsuvidha.in/

www.studentsuvidha.in

E —id +{id +id)*id

A1
7 AN

AN
'z

E
/
id id
Fig. Left Mast Derivation
Right Most Derivation :

E-+E*E
E—E*id
E—+E+E*id
E—+E+(E)*id

E—=E+{E+E)*id
E-»E+(id+id)*id
E —»id + (id + id)*id
E—id+(id +id)*id

AN
AN
LN

/f\

‘\
id id

Rightinost Derivation
The Grammar is Ambigous

http://studentsuvidha.in/
http://studentsuvidha.in/

www.studentsuvidha.in

Buttom-up :
W=id+{id~id)=id
W = E+{id +id)*id
W=E+{E+id)*id
W=E+(E+E)*id
W=E+(E+E)*E
W=E+(E)*E
W=E+E*E
We=E*E

WeE
Left Most Derivation :

W= id +(id + id)*id
W =id ¢ (id +id)*E
W=id+(id+E)*E
W = id+{E+E)*E
W=E+(E+E)*E
W=E+(E)*E

W=FE+E*E
W=E+E
W=E
Right Most Derivation
The grammar is ambiguous
Q. 4. (b) Remove the left recursion from grammar given in Q4.(a).
Ans,
E-E+E
E—=E*E
E—(E)
E—id
Now, after removing left recursion the grammar is

http://studentsuvidha.in/
http://studentsuvidha.in/

www.studentsuvidha.in

LE - (E)EVidE'

E'— +EEY*EEY

Q.-S. {a) Explain the warking and algorithm of LR parsers.
Ans, The schematic form of an LR parser is shown in fig. |.

STACK

It consists of an input, an autpﬁt. a stack, a driver program, & a parsing table that has two parts (action &
goto). The driver program is the same for all the LR parsers, only the parsing table changes from one parser to
another. The parsing program reads characters from an input buffer one at a time. The program uses a stack to

store a string of the form S5X 5, X358;5...... X ,Sy,, . where S, is on top. Each X; is a grammar symbol and

each 5; isasymbol called a state. Each state symbol summarizes the information contained in the stack below

Sm

Apfaes

a

i
I

xm

S

-xlh-l

Sy

L

LR

Parsing algorithm

— Qutput

action goto

it and the combination of the state symbol on top of the stack.

Algorithm :

input : An input string W and an LR parsing table with functions action and goto for a grammar G.

Output : If W is in L{G), a bottom-up parse for W otherwise, an error indication.

Method: Initially, the parser has Sy on its stack, where 5y is the initial state and W3 in the input buffer.
The parser then executes the program in fig. 2, until an accept or error action is encountered,

Fig. 2

Set ip to point to the first symbol of W§;

repeat forever begin

Let S be the state on top of the stack and a the symbol pointed to by ip;

if action [s, a] = shift 5’ then begin

push a then s’ on top of the stack;
advance ip to the next input symbol

end

else if action [s, a] = reduce A — B then begin

pop 2*B| symbols off the stack;

http://studentsuvidha.in/
http://studentsuvidha.in/

www.studentsuvidha.in

Let & be the state now on top of the stack;
push A them goto [s', A] on top of the stack;
output the production A —

end
else if action |3, a] = accept then
return
else emmor()
end.
Q. 5. (b) Check whether following grammar is LR(0) grammar or not.

52L=R
S=R
L—+*R
L-»id
R—>L

Ans. (U} S5
(" S-R
(2) L-*R
(3) L—id
{4) R—L

Starting with the closure (S'— 8}, we get |

ICI: 'S
S=L=R
5K
L—*R
L—».id
R—.L

[j: 8= 5

I;:5=>L=R
E— L,

I3:5= R,

Ij:L=*R
R—L.
L—-*R
L —.id

ls (L —id.

http://studentsuvidha.in/
http://studentsuvidha.in/

www.studentsuvidha.in

le:$— L=R
R —.L
L—="R
Lo—.d
I7:L="R
Ig:R—.L
lg:S—=1.=R
Cumonical sets of LR{3) frems.,

). v.{8) What 1s syniax directed definition, why are they important?

Ans. Syntax Directed Definition : A syntax directed definition is a generalization of a context-free gram-
mar i which each grammar symbol has an associated set of attributes, partitioned into two subsets called the
synthesized and inherited atuributes of that grammar symbol

Syntax-directed definstions are high level specifications for transiations. They hide many implementaiion
details & free the user from having to specify explicitiy the order in which translation takes place:

Forin of a Syntax-Directed Definition : i a syntax-directed definition. each grammar production A -»

nas associated with it a set of semantic rules of the form bi=f{c},c;......,¢) where [ls a function, and either.

(iybis asymhesized atiributc of A and <), c5.......¢y are atributes belonging to the srammar symbols of
the preduction, er
{fi) b is an inherited attribute of one of the grammar svmbols on the right side of the preduction and

1563 4.0y € A€ Allribut belonging to the grammar symbols of the production.
(). 6. (b) Create 3-address code for following expression :
a+a*(b—cj+{b—c)*d

Ans. at+a*(b~c)+(b-c)*d
lji=b-c¢
I3 i=a*y
tyi=t*d
ty 1= 1y +13
tyi=a+ts.

). 7. (a) What are different types of errors in compilation process. Explain a typical error detection and
'recovery mechanism.'

Ans. Error can occur al every stage of compiler.
— Something missed while typing.
— Some misspelling occurred.
—» Incorrect use of logical.operators.
- Violation of rules of language.

http://studentsuvidha.in/
http://studentsuvidha.in/

www.studentsuvidha.in

—» Type incompatibility of variables.
— Incorrect algorithim may produce erroneous result,
— Dhvision by zero.
—3 Excecdmng the memory size ofa vanable.
—» Exceeding array limit.
— lncorrect use of keywords.
—» Syntactic violatien,
-+ Function with improper name or retum fype,
-+ Transposition of two adiacem characters or tokens.
- Deletioa of require: | character or token,
Syntax errors dre detected by lexical or syntactic phase of compiler and all other are termed as semantic
Errors.
Saniax Fyrors:
nta, b, —» éxtrancous cnm.;nn
ca*b + c/d - russing parenthesis
Column in place of semicolumn
A=30:
B=30:
4. Misspelled keyword
mains() in place of main ()
Flot in place of float

ool (L

While in place of while
5 Extrablank

‘Error detectior & its reporting is important function of eompiler. Errors can be found at almost all the
phases of the compiler.

Lexical Phase : Misspelled token

Syntax Phase : Missing parenthesis or erroneous arithmetic expressions,

Intermediate Code : Incompatible operand types.

Code Optimizer : Cenain statements aré not rcachable due to wrongly written function calls.
Code Generator : Some of the created words are too large to fit into registers.

Whenever of the phase detects error, it must call the error handler, which issues appropriate diagnostic
message. Il errcrs are not handled properly it may result into chaos and system may crash.

Error-Recovery Strategies :
(1) Panic mode

(1) Phrase level

(i) Error productions
{iv) Giobal correction

http://studentsuvidha.in/
http://studentsuvidha.in/

www.studentsuvidha.in

Panic-Mode Recovery @ This is the simplest method to implement and can be used by most parsiag
miethods. On discovering an error, the parser discards input symbols one at a time until one of a designated et
of svnchronizing tokens 15 found. The synchronizing wkens are usually delimiters, such as semicolon or end.
whose role in the source program is clear,

FPhrase-Level Recovery : On discovering an error, a parser may perform local correction on the remaining
input: thar is. it may replace a prefix of the remaining input by some string that allows the parser 12 continue,

Error Productions : If we have a good idea of the common errors that might be encountered, we can
auginent the grammar for the language at hand with productions that generate the erroneous constructs. We
then use the grammar augmented by these ervor productions to construct a parser.

Global Correction : 1deally, we would like a compiler 1o make as few changes as possibie in processing an
incorrect input string,
(. 7.(b) Explain various target for the intermediate code optimization.

Ans. Intermediare Code Oprimization : After syntax and semantic analysis, some compilers generare an
explicit intermediate representation of the source program. This imtermediate representation should have two
important properties; it should be easy 1o produce and easy 1o translate imo the target program. We can
represent an intermediate form called "three address code”, which is likely the assembly language for a machine
i which every memory location can act like a register. Three address code consists of a sequence of instrue-
tions. each of which has almost three operands. Code optinization is an optional phase designed to improve
the intermediate code so that the ultimate object program runs faster &/or takes less space. In code optimization
we venerally try to remove the necessary variables.

(). 8. (a) How registers are allocated while creating machine code?

Ans. Instructions involving register operands are usually shorter & faster than those involving operands
in memory. Therefore efficient utilization of registers is particularly important in generating good code.

The use of registers 1s aften subdivided into two subproblems.

(i) During register allecation, we select the set of variables that will reside in registers at a point in the
program.

(i) During a subsequent register assignment phase, we pick the specific register that a variable will
reside in. 5

Global Register Allocation : The code generation algorithm used registers to hold values for the duration
of a single basic bleck. However, all live variables were stored at the end of each block.

One strategy for global register allocation is to assign some fixed number of registers to hold the most
active values in each inner loop.

Q. 8. (b) What are basic blocks and flow diagram, explain PEEPHOLE optimization technique.
Ans. Basic Blocks : Functions transfer control from one place (the callar) to another (the called function).
A basic block is a sequence of statemenis that enters at the start and ends with a braach at the end.
Remaining task of code generation is to create code for basic blocks and branch them together.
“main{)
i
inta=0;intb=0;

{

http://studentsuvidha.in/
http://studentsuvidha.in/

www.studentsuvidha.in

intbh=1;
{
intag=2;
printf(’ %ed®'n", a, b);

inth=3;
printf ("%d%d\n" a, b);

!
primf {"Yed%odin”, a, b

printf{ "%ed¥ed'n", &, 0);
}

Partition Into Basic Blocks :
* Ipput : sequence of TAC instructions :
(i) Determine set of lcaders, the Ist statement of each basic block :
{a) The ler statement is g lecder,
(b) Any statement that is the arget of a copditional jump or golo is a leader.
e} Any statement immediately following a conditional jump or goto is a leader.
{my For each leader, the basic block contains all statements upto the next leader.
The following sequence of three address statemen’s forms a basic block ; .

by 7 by +1y
ts:h*h

I'f'l t4 *-'5

Flow Graph : We can add the flow-to-control information to the set of the basic-blocks making up a '
program by constructing 2 directed graph called a flow graph. The modes of the flow graph are the basic blocks.

One node is distinguished as initial; it is the block whose leader is the first statement. There is a directed
edge from biock B, 1o block B, if B, canimmediately follow B, in some execution sequence; that is, if
(i) There is a conditional or unconditiosal jump from the last statement of B, to the first statement of

B, or -

http://studentsuvidha.in/
http://studentsuvidha.in/

www.studentsuvidha.in

(i) Ba immediately follows B inthe order of the program and B, does not end in an unconditional

jump.
rmﬂi =:f.: B,

ty:=4"i
t2=aly)
t3:=4%i
t4:=b(ts]
ts ="ty Ba
tg = Prod +15
Prod . =tg
t?' =1+l
i:=17
if 1==20 goto Bo

)

Flow Graph

Peephole Optimization Technique : A simple but effective technique for locally improving the target coda
is peephole optimization, a method for trying to improve the performance of the target program by examining a
shorl sequence of target instructiors (called the peephole) & replacing these imstructions by a shorter or faster
sequence, whenever possible. Peephole technigue can also be applied directly after intermediate code genera-
tion to improve the intermediate representation.

The peephole is a small, moving window on the target prozram. Ti is the characteristic of 1he peephole
optimization that each improvement may spawn epportunities for additional improvements,

http://studentsuvidha.in/
http://studentsuvidha.in/

