Seat N	lo.: _		
		GUJARAT TECHNOLOGICAL UNIVERSITY	
		BE- VI th SEMESTER-EXAMINATION – MAY- 2012	
Subj	ect c	ode: 161904 Date: 17/05/2	2012
Subj	ect N	Name: Alternate Energy Sources	
_		:30 am – 01:00 pm Total Marks	s: 70
Insti		-	
		empt all questions.	
		ke suitable assumptions wherever necessary.	
		res to the right indicate full marks.	
Q.1	(a)	Write short notes on classification of energy resources. Also explain which type of Alternate Energy Source is the best suitable for rural and agricultural applications and why?	07
	(b)		07
Q.2	(a)	Explain the concept of "Solar Constant" and "Air mass"? What is the variation of solar Constant with time and what is the reason for this variation?	07
	(b)	Derive a general equation for flux incident on a solar collector in terms of hourly beam and diffuse radiations, tilt factors, angle of incidence, Zenith angle and absorptivity transmissivity products for beam and diffuse radiations.	07
	(b)	Calculate monthly average of Daily Global Solar Radiation on a Horizontal Surface located in Ahmedabad Gujarat state (22°.00' N, 73°.10' E) for the month of April. Average Solar day hours are 10 hrs. Angstrom's constants for Ahmedabad, a = 0.28, b = 0.48	07
0.3	(a)	How the sold water heating quateres are elegatified? Explain the working of	07
Q.3		How the solar water heating systems are classified? Explain the working of thermo-system solar water heating system with the help of a neat sketch.	07
	(b)	What a Solar ponds? Discuss the working of a solar pond with help of a neat sketch. OR	07
Q.3	(a)	Prove that in case of Horizontal Axis Wind Turbine maximum power can develop when exit velocity = $1/3$ of wind velocity and $P_{max} = 8 \rho A V_i^3 / 27$	07
	(b)	The following data refer to a wind mill of a wind farm in Gujarat.	07
		Average wind speed = 23.5 km/hr	
		Atmospheric pressure = 1.01 bar	
		Atmospheric temperature = 30° C	
		Power coefficient = 0.41	
		Total power output capacity of wind farm = 1 MW	
		Determine, (1) Available power density of wind	
		(1) Available power density of wind.(2) Actual power density of wind mill.	
		(3) Number of wind mills in the farm if the rotor diameter is 25 m.	

(a) State and explain various routes of Biomass energy conversion to other 07

(b) Explain the working principle of Magneto hydrodynamic generator? Also 07

(a) Describe the working of a floating drum type KVIC biogas plant with the 07

Q.4

Q.4

form of energy.

compare with conventional power plants.

(b) (c)	Draw neat sketches of Open and Closed cycle OTEC systems. What is wave energy? How it can be used for power generation.	04 03
(a)	A tidal power plant of single basin type, has a basin area of $25 \times 10^6 \text{ m}^2$. The tide has a range of 10 m. The turbine however, stops operating when the head on it falls below 2 m. Calculate the energy generated in one filling process, in kWh if the turbine generator efficiency is 75 %. Take density of sea water is 1025 kg/m^2 .	07
(b)	What is low temperature liquid dominated geothermal resources? How this heat can be utilized for power generation? Also, state the advantages of such a system.	07
	OR	
(a)	Explain the working of liquid metal MHD system with help of neat sketch.	07
(b)	What do you understand by "energy management" and "energy audit"? Classify the energy audit and discuss them in brief. ***********************************	07
	(c) (a) (b)	 (c) What is wave energy? How it can be used for power generation. (a) A tidal power plant of single basin type, has a basin area of 25 x 10⁶ m². The tide has a range of 10 m. The turbine however, stops operating when the head on it falls below 2 m. Calculate the energy generated in one filling process, in kWh if the turbine generator efficiency is 75 %. Take density of sea water is 1025 kg/m². (b) What is low temperature liquid dominated geothermal resources? How this heat can be utilized for power generation? Also, state the advantages of such a system. OR (a) Explain the working of liquid metal MHD system with help of neat sketch. (b) What do you understand by "energy management" and "energy audit"? Classify the energy audit and discuss them in brief.