	Seat N	Io.: Enrolment No	
		GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII • EXAMINATION – WINTER • 2014	
	Subje	ect Code: 170605 Date: 29-11-2014	
	Subje	ect Name: Advanced Structural Analysis	
		: 10:30 am - 01:00 pm Total Marks: 70	
	Instru	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Take E=2x10⁸ kN/m², I= 1.5 x10⁻⁵ m⁴ , A=0.002 m²,G=0.8x10⁸kN/m² and J=3.0x10⁻⁵ m⁴ if not given. 	
Q.1		Analyse the beam shown in fig.1 using stiffness member approach. In addition to loading consider effect due to sinking of support at B by 4 mm.	14
Q.2	(a)	Enlist different loading facilities available in the structural analysis professional software that you have learned. Explain assignment of floor loading facilities in detail.	07
	(b)	What is discretization? Explain how discretization is done in finite element analysis?	07
	(b)	Determine the shape functions for the Constant Strain Triangle.	07
Q.3		Analyze the frame for fig.2 by stiffness matrix method using member approach. OR	14
Q.3	(a)	Find the displacements for the pin jointed truss shown in the fig.3 using stiffness member approach. Adopt cross sectional area of all members = 900 mm^2 and $E=200 \text{ kN/mm}^2$.	07
	(b)	Determine the elements of the stiffness matrix for a grid member.	07
Q.4		Analyze the assembly of bars shown in the fig.4 using FEM. Plot the variation of displacement, stress and strain along the length.	14
		OR	
Q.4		Analyse the beam shown in fig.5 using FEM. Plot SF & BM diagrams.	14
Q.5	(a)	What is preprocessing and post-processing? Enlist different pre and post processing facilities available in the structural analysis professional software you have learned.	07
	(b)	Explain symmetry and anti-symmetry . Sketch at least one beam, one plane truss and one plane frame having symmetry and anti-symmetry. \mathbf{OR}	07
Q.5		Prepare an input file matrix in to store data of $n \times n$ size S_{FF}^{-1} matrix and column vector	14

Enrolment No. _____

input file.

A_{FC}Prepare C or C++ program to read above data and containing function capable to handle the multiplication of these matrices and store result as D_F vector. Write sample

