\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VII • EXAMINATION - WINTER • 2014

Subject Code: 170605

Date: 29-11-2014

Subject Name: Advanced Structural Analysis Time: 10:30 am - 01:00 pm Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Take $\mathrm{E}=2 \times 10^{8} \mathrm{kN} / \mathrm{m}^{2}, \mathrm{I}=1.5 \times 10^{-5} \mathrm{~m}^{4}, \mathrm{~A}=0.002 \mathrm{~m}^{2}, \mathrm{G}=0.8 \times 10^{8} \mathrm{kN} / \mathrm{m}^{2}$ and $\mathrm{J}=3.0 \times 10^{-5} \mathrm{~m}^{4}$ if not given.
Q. 1 Analyse the beam shown in fig. 1 using stiffness member approach. In addition to loading consider effect due to sinking of support at B by 4 mm .
Q. 2 (a) Enlist different loading facilities available in the structural analysis professional07 software that you have learned. Explain assignment of floor loading facilities in detail.
(b) What is discretization? Explain how discretization is done in finite element 07
analysis?

OR

(b) Determine the shape functions for the Constant Strain Triangle.
Q. 3 Analyze the frame for fig. 2 by stiffness matrix method using member approach.
OR
Q. 3 (a) Find the displacement for the pin jointed truss shown in the fig. 3 using stiffness member approach adopt cross sectional area of all members $=900 \mathrm{~mm}^{2}$ and $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$
(b) Determine thef irements of the stiffness matrix for a grid member.
Q. 4 Analyzfy ine assembly of bars shown in the fig. 4 using FEM. Plot the variation of displadement, stress and strain along the length.

OR

Q. 4 Analyse the beam shown in fig. 5 using FEM. Plot SF \& BM diagrams.
Q. 5 (a) What is preprocessing and post-processing? Enlist different pre and post processing 07 facilities available in the structural analysis professional software you have learned.

(b) Explain symmetry and anti-symmetry . Sketch at least one beam, one plane truss and one plane frame having symmetry and anti-symmetry.

OR

Q. 5 Prepare an input file matrix.in to store data of $\mathrm{nxn} \operatorname{size} \mathrm{S}_{\mathrm{FF}}^{-1}$ matrix and column vector A_{FC}.Prepare C or $\mathrm{C}++$ program to read above data and containing function capable to handle the multiplication of these matrices and store result as D_{F} vector. Write sample input file.

Fig. 1 Q. 1

Fig. 2 Q. 3

Fig. 3 Q.3(a) OR

Fig. 5 Q. 4 OR

Fig. 4 Q-4

