GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-VI • EXAMINATION - SUMMER 2014

Subject Code: 160606
Date: 30-05-2014
Subject Name: Geotechnical Engineering-II
Time: 10.30 am - 01.00 pm
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Differentiate between Finite and Infinite slope. Explain the method of 07
checking the stability of a finite slope by Swedish method of Slices for
a Cohesive frictional soil.
(b) An embankment is inclined at an angle of 40° and its height is 10 m .07
The angle of shearing resistance is 20° and cohesion intercept is 100
kPa. The unit weight of soil is $19 \mathrm{kN} / \mathrm{m}^{3}$ If the Taylor stability number
is 0.06 , find the factor of safety with respect to cohesion.
Q. 2 (a) Write short notes on
I. Active and passive earth pressure,
II. Rankine's earth pressure theory,
III. Mohr circle diagram for active and passive state.
(b) A Retaining wall with a smooth vertical back retains a purely cohesive fill. Height of wall is 11 m . Unit weight of fill is $20 \mathrm{kN} / \mathrm{m}^{3}$. Cohesion is 10 kPa and $\Phi u=g 0^{\circ}$. What is the total active Rankine thrust on the wall? At what cipth is the intensity of pressure zero and where does the resultant oust act?

OR

(b)
A refoning wall 5.0 m high with a smooth vertical back retains a dry sandy backfill of unit weight $18 \mathrm{kN} / \mathrm{m}^{3}$ and $\Phi=30^{\circ}$. The backfill carries a uniformly distributed load of 10 kPa . Find by Rankine's theory the total active pressure per m length of the wall and its point of application above the base. If the water table rises behind the back of the wall to an elevation of 2.0 m below the top of the wall, what is the change in the total active pressure per m of the wall? Assume no change in Φ.
Q. 3 (a) What are the basic assumptions in Boussinesq's theory of stress07 distribution in soils? Show the vertical stress distribution on a horizontal plane at a given depth. Explain pressure bulb.
(b) A concentrated load of 50 kN acts on the surface of a homogeneous soil mass of large extent. Find the stress intensity at a depth of 5 m and
a) Directly under the load, and
b) At a horizontal dist of 5 m . Use Boussinesq's equation.

OR

Q. 3 (a) Describe the standard penetration test used in soil exploration. List the $\mathbf{0 7}$ information that can be obtained by the test when made in (i) clay, (ii) sand.
Comment on the correction factor for N - values for the dry sand and submerged fine sand.
(b) Compute the area ratio of a thin walled tube sampler having an external diameter of 100 mm and a wall thickness of 2.0 mm .
Do you recommend the sampler for obtaining undisturbed soil samples? Why?
Q. 4 (a) Discuss the various factors that affect the bearing capacity of a shallow
footing. How do you ascertain whether a footing will fail in local or general shear failure?
(b) Compute the safe bearing capacity of a square footing $2.0 \mathrm{~m} * 2.0 \mathrm{~m}$, located at a depth of 1.5 m below the ground level in a soil of unit weight $19 \mathrm{kN} / \mathrm{m}^{3}, \Phi=20^{\circ}, \mathrm{N}_{\mathrm{c}}=17.7, \mathrm{~N}_{\mathrm{q}}=7.4, \mathrm{~N}_{\gamma}=5.0$. Assume a suitable factor of safety. The water table is very deep. If the water table touches the base of the footing, find the reduction in safe bearing capacity.

OR

Q. 4 (a) Explain general and local shear failure. Bring out clearly the effect of07 water table on the bearing capacity of a footing.
(b) A strip footing 1.4 m wide, rests on the surface of a dry cohesionless soil having $\Phi=20^{\circ}$, and $\gamma=18 \mathrm{kN} / \mathrm{m}^{3}$. If the water table rises temporarily to the surface due to flooding, calculate the percentage reduction in the ultimate capacity of the soil. Assume $\mathbb{N}_{\gamma}=5.0$.
Q. 5 (a) What do you mean by pile group efficiency? What are the various formulae to find it?
(b) A Square pile ($3 * 3=9$ piles) are embedded in clayey bed $(\mathrm{Cu}=100$07 $\mathrm{kPa})$. The c / c spacing is kept as 3 d . The length and diameter of the pile are 10 m and 0.3 m respectively. If $\alpha=0.6$, calculate the pile group capacity considering it as friction pile group.
Q. 5 (a) What is the basis which the dynamic formulae are derived? Mention two well knowa tynamic formulae and explain the symbols involved.
(b) A 30 cm didfeter pile, 15 m long, is driven in a deposit of medium dense $\operatorname{san}^{\circ}{ }^{\circ}\left(\Phi=36^{\circ}, \mathrm{N}_{\gamma}=40, \mathrm{~N}_{\mathrm{q}}=42\right)$. The unit weight of sand is 15 $\mathrm{kN} / \mathrm{m}^{3}$ What is allowable load with factor of safety 3? Assume lateral eartop pressure coefficient $=0.6$.

