GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VI • EXAMINATION – SUMMER 2013

Sub	ject	Code: 160606 Date: 04-06-2013	
Sub Tim Instr	Time: 10.30 am - 01.00 pm Total Marks: 70		
mgu	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a) (b)	Write in short õMethods of site Explorationö. A strip footing of 2 m width is placed at a depth of 4 m below the ground surface. Determine the net ultimate bearing capacity using, 1) Terzaghiøs equation, 2) Skemptonøs equation and 3) IS code. The unit weight of soil (clay) is 20 kN/m ³ and cohesion $c = 10 \text{ kN/m^2}$.	07 07
Q.2	(a) (b)	Describe õNegative skin frictionö. An 11 m long pile of 40 cm diameter has a bell of 2 m diameter and 1 m height. If the soil has $Ø = 25^{\circ}$, $c_u = 20 \text{ kN/m}^2$ and $= 19 \text{ kN/m}^3$, find allowable pull out resistance. Factor of safety = 3.	07 07
	(b)	Explain in detail õUnder Reamed Pileö.	07
Q.3	(a) (b)	Which factors affect the bearing capacity of soil? Explain any two in detail. A strip footing 2 m wide carries a load intensity of 400 kN/m ² at a depth of 1.2 m in sand. The soil properties are: sat = 19.5 kN/m ² and b = 16.8 kN/m ² , \emptyset = 35° . Determine the factor of safety w.r.t shear failure. For case (a) water table is 4 m below GL (b) water table at GL. For $\emptyset = 35^{\circ}$, Nq = 41.4 and N = 42.4.	07 07
Q.3	(a) (b)	A pile foad test has been carried out on a 30 cm dia. RCC precast pile already driven into the ground. The results obtained are tabulated below Load (t) 40 80 120 140 160 170 Penetration(mm) 3 5 10 21 32 37.5 Determine the allowable compressive load in kN that you would recommend. Derive the õBoussinesq/s equation of vertical stress and tangential stress due to concentrated load applied on the ground.	07 07
Q.4	(a) (b)	How will you get the stability of Infinite slopes for c- soils? Calculate the factor of safety with respect to cohesion, of a clay slope laid at 1 in 2 to a height of 10 m, if the angle of internal friction = Ø 10° , c = 25 kN/m ² , and = 19 kN/m ³ . What will be the critical height of the slope in this soil? Use following information for Sn. Ø = 15°, i = 26.5° Sn = 0.060 Ø = 10°, i = 26.5° Sn = 0.064	07 07
Q.4	(a)	UK Write short note on õNew-markøs Influence Chartö.	07
	(b)	Explain Swedish circle method of stability analysis.	07

1/2

Download all NOTES and PAPERS at StudentSuvidha.com

- Q.5 (a) Explain Culmannøs graphical method for active pressure.
 - (b) A retaining wall of 4 m high which retains sand has a smooth vertical back. 07 The backfill has a level with the top of the wall. There is a uniformly distributed surcharge load of 36 kN/m², intensity over backfill. The unit weight of the backfill is 18 kN/m³, its angle of shearing resistance is 30°. Determine the magnitude and point of application of active earth pressure per meter length of the soil.

OR

- Q.5 (a) In a 16 pile group, the pile diameter is 0.4 m and c/c spacing of piles in the 07 square group is 1.5 m. If $c_u=50 \text{ kN/m^2}$, determine whether the failure would occur as block failure or when the piles act individually. Neglect bearing at the tip of the pile. All piles are 12 m long. Take m=0.7 for shear mobilization around each pile. Also determine the safe load on this group.
 - (b) A counterfort wall of 10 m height retains non-cohesive back fill. The void 07 ratio and angle of internal friction of the back fill respectively are 0.7 and 30°, in the loose state, and they are 0.40 and 40° in the dense state. Calculate and compare active earth pressure in both the states. Take specific gravity of soil grains as 2.7.

Download all NOTES and PAPERS at StudentSuvidha.com