Seat No.:	Enrolment No
-----------	--------------

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- VIth SEMESTER-EXAMINATION – MAY- 2012

•		ode: 160602 Date: 11/05/2 Jame: Applied Fluid Mechanics	012
•	: 10:	30 am – 01:00 pm Total Marks	s: 7 0
2.	Mak	mpt all questions. The suitable assumptions wherever necessary. Theres to the right indicate full marks.	
Q.1	(a)	Derive an expression for the velocity distribution of viscous flow through a circular pipe and prove that the ration of maximum velocity to average velocity is 2.	07
	(b)		07
Q.2	(a)	1	07
	(b)	thickness(δ^{**}) of boundary layer flow. Obtain Von Karman momentum integral equation.	07
		OR	07
	(D)	Water is flowing through a rough pipe of diameter 600mm at the rate of 550 litres/second. The wall roughness is 3mm. Find the power lost for 1.2 km length of pipe.	07
Q.3	(a)	* *	07
	(b)	A trapezoidal charmel has side slopes of 1 horizontal to 2 vertical and the slope of the bear is 1 in 1500. The area of the section is 50 sqmt. Find the optimum dimensions of the channel. Also determine the discharge if C = 50.	07
Q.3	(a)	OR What is difference between back water curve and drop down curve. Find	07
Q.S	(a)	the slope of the free water surface in a rectangular channel of width 20m and depth of flow 5m. The discharge through the channel is 60 cumecs. The bed slope of the channel is 1 in 4000. Take $C = 60$.	V7
	(b)	Classify different types of hydraulic jump as per USBR.	07
		Water flows at the rate of 2 cumecs along a channel of rectangular section 2m in width. Calculate the critical depth. If a hydraulic jump formed at a point where the u/s depth is 0.25m what would be the rise in water level and power lost in the jump.	
Q.4	(a)		07
	(b)	Explain different types of hydraulic similarities that must exist between a prototype and its model.	07
Q.4	(a)	1	07
	(b)	area and discharge. A 1:70 model is constructed of an open channel in concrete which has Manning's $N=0.014$. Find the value of N for the model.	07
Q.5	(a)	Differentiate between : (a) Impulse and Reaction turbines (b) Radial flow	07

		and Axial flow turbines (c) Kaplan and Propeller turbines	
	(b)	A Pelton turbine is to be designed for the following specification:	07
		Shaft power = 11000 kw ,	
		Head = 365metres,	
		Speed = 750 r.p.m. ,	
		Overall efficiency = 86%	
		Jet diameter = $1/6$ of the wheel diameter.	
		Determine (i) The wheel diameter (ii) The no of jets required and (iii)	
		Diameter of the jet. Take Kv1=0.985 and Ku1=0.45	
		OR	
Q.5	(a)	Explain cavitation in turbines and centrifugal pumps and write the effects.	07
	(b)	Explain characteristics curves of centrifugal pumps with neat sketches	07
		• • • •	

doubladd fran Elvidha. Com Students Lividha.