GUJARAT TECHNOLOGICAL UNIVERSITY BE- VIt ${ }^{\text {th }}$ SEMESTER-EXAMINATION - MAY- 2012

Subject code: 160602

Subject Name: Applied Fluid Mechanics Time: 10:30 am - 01:00 pm Instructions:
 1. Attempt all questions.
 2. Make suitable assumptions wherever necessary.
 3. Figures to the right indicate full marks.

Total Marks: 70
Q. 1 (a) Derive an expression for the velocity distribution of viscous flow through a
circular pipe and prove that the ration of maximum velocity to average
velocity is 2 .
(b) A fluid of viscosity 0.98 poise and relative density 0.9 is flowing through a
horizontal circular pipe of diameter 100 mm and of length 12 m . Calculate
the difference of pressure at the two ends of the pipe, if 120 kg of fluid is
collected in a tank in 30 seconds.
Q. 2 (a) Derive an expression for the momentum thickness(θ) and energy thickness ($\delta^{* *}$) of boundary layer flow.
(b) Obtain Von Karman momentum integral equation.

OR

(b) Water is flowing through a rough pipe of diameter 600 mm at the rate of 550 litres/second. The wall roughness is 3 mm . Find the power lost for 1.2 km length of pipe.

Q. 3 (a) Classify open chanael flow and explain each in brief.
 07
 (b) A trapezoidal ohamel has side slopes of 1 horizontal to 2 vertical and the slope of the bed is 1 in 1500 . The area of the section is 50 sqmt . Find the optimum difensions of the channel. Also determine the discharge if $\mathrm{C}=$ 50.

OR

Q. 3 (a) Weat is difference between back water curve and drop down curve. Find the slope of the free water surface in a rectangular channel of width 20 m and depth of flow 5 m .The discharge through the channel is 60 cumecs. The bed slope of the channel is 1 in 4000 . Take $\mathrm{C}=60$.
(b) Classify different types of hydraulic jump as per USBR.

Water flows at the rate of 2 cumecs along a channel of rectangular section 2 m in width. Calculate the critical depth. If a hydraulic jump formed at a point where the u / s depth is 0.25 m what would be the rise in water level and power lost in the jump.
Q. 4 (a) Write procedure for solving problems by Buckingham's π theorem. 07
(b) Explain different types of hydraulic similarities that must exist between a prototype and its model.

OR

Q. 4 (a) Explain different types of models and obtain the scale ratio for velocity, area and discharge.
(b) A 1:70 model is constructed of an open channel in concrete which has $\mathbf{0 7}$ Manning's $\mathrm{N}=0.014$. Find the value of N for the model.
Q. 5 (a) Differentiate between : (a) Impulse and Reaction turbines (b) Radial flow
and Axial flow turbines (c) Kaplan and Propeller turbines
(b) A Pelton turbine is to be designed for the following specification :

Shaft power $=11000 \mathrm{kw}$,
Head $=365$ metres,
Speed $=750$ r.p.m. ,
Overall efficiency $=86 \%$
Jet diameter $=1 / 6$ of the wheel diameter.
Determine (i) The wheel diameter (ii) The no of jets required and (iii)
Diameter of the jet. Take Kv1 $=0.985$ and $\mathrm{Ku} 1=0.45$
OR
Q. 5 (a) Explain cavitation in turbines and centrifugal pumps and write the effects. 07
(b) Explain characteristics curves of centrifugal pumps with neat sketches 07

