www.studentsuvidha.in

B.E.
Fifth Scmester Examination, May-2007
Analysis & Design of Algorithms (cse-30s-E)

Mote : Altempl any ffve questions,

0. 1. {a) What do vou understand by Analysis of Algorithm? Justify its need.

Ans, Analgorithin is a finite set of instructions that, if followed, accomplishes a particular task, This field
of study is called analysis of algorithms. As an algorithm is executed, it uses the computer's CPU to perform
operations & its memory o hold the program & data: Analysis of alzorithms or performance analysis refers to
the task of determining how much computing time & storage an algorithm requires. This s a challenging area
which sometimes requires great mathematical skill. An important result of this study is that it allows you to
make quantitative judzements abouwt the value of one algorithm over another. Another result 15 that it aflows
you to predict whether the software will meet any efficiency constramis thet exist. Questions such as how well
does an algorithm perform is the best case, in the worst case. or on the average are typical. For each algorithm
in the text, an analysis is also given.

. 1. (b} What is meant by searching & sorting? Discuss different methods (any two) used for
searching and sorting, Also discuss their efficiency in terms of time and space. :

Ans, Searching : Searching is the process 1o find oul or retrieve a value or record from a table,

For searching we are having,

I. Linear search

2. Binary search

1. Linear Search : In this technigque, we start at a beginning ol a list or a table & search for the desired
record by examining each subsequent 1ecord until either the desired record is found or the list s exhausted.

2. Binary Search : Linear search is a simple & easy method. It is efficienct for small lists but highly
inefficient for large list.

To search a particular item with a certain key value warget the approxinate middle entry of the able is
located. & its key value is examined. 1fits value is higher than the target, the key value of the middle entry of the
first halt of the list is examined & the procedure is repeated on the first half until the required item is found. 11 the
value is lower than the target, the key value of the middie entry of second half of the table is taken & the
procedure is repeated on the second half. This process continues until the required key is found or the search
intervals became empiy,

Sorting : Is the operation of arranging the records of a table according to the key value of each record.

Bubble Sort : The basic jdea underlying the bubble sort is te pass through the table sequentially several
times. Each pass puts the largest unsorted element in its correct place by compairing cach element in the table
with its successor £ interchanging the two elements if they are not in proper order,

Q. 2. Discuss Merge sort and quick sort Algorithms. "Merge sort is good choice instead of quick
sort." Do you agree with statement? Justify your answer.

Ans, Merge Sort : Given a sequence of n elements (also called keys) EI[]] a[n], the general ideaisto

imagine them split into two sets a[l].....a[n/ 2] & a[[n/2]+ I]......a[n]_ Each set is individually sorted, & the

resulting sorted sequences are merged to produce a single sorted sequence of n elements. Algorithm for merge
sort is given below |

http://studentsuvidha.in/

www.studentsuvidha.in

Algorithim mergesort | low, high)
O [low ; high| is a global array to be sorted.
small (p) is true ifthere is only one element.
Horosort. In this case the st is.already
Usarted.

1 i how < highythen '/ T there are more than
fone element.
f UMivide P into subproblems.
Y Find where 1o split the set
nid - = [{low + high)/2}:
i Solve the subproblems.
Merzesort {low, mid);
Mergsort {mid + 1. high);
I Combine the soluwtions.
Merae {low, mid, hish):

Quicksort : In quicksorl. the divison into two subarrays is made so that the sored subarrays do not need

10 be merged later. This is accomplished by rearranging the ¢lements in a[l'.n] such that a{i]g IJI for all §

between | & m & all j betweenm + | & nfow some myi £ m = n. Thus, the clements ina [i:m]& a[m+ I:n] can

be independently sorted, No merge s needed. The rearrangement of the elements is accomplished by picking
some element of a | |, say t = als]. & then reordering the other elements. So that all elements appearing before
vina |t: nj are less than or equal to t & all elements appearing after t are greater than or equal to t. This
rearranging is referred to as partitioning function partition accomplishes an in place partitioning of the elements

of a [m:p 1] It is assumed that a[p] = a[m] and that a [m] is the partitiur'ng element. The function inter-
chanue (a, 1. j) exchapges a [i] with afj].
Algonthm Quicksort {p. q)
i sorts the elements a [p]. ... a [g] which reside in the global array a [: n] into ascending order; a[n+ 1]

is considered to be defined & must be > all theelementsina 1 : n]

i~ q) then & 16 there are more than one element .
; i dhivide poioto two subprableme,
§o- partition{a. p.g+ 1)
A1 s the position of the partitioning element.
' Solve the subproblems
Cuicksort{p.j- 1%
Ouicksortd) + 1, q);
I There is no need for combining solutions

http://studentsuvidha.in/

www.studentsuvidha.in

Quicksort & Mergesort were evaluated on a SUN workstation 10/30. In both cases the recursive versions
were wsed. For Quicksort the partition function was altered to carry out the median of three rule (ie the
partitioning element was the median ofa fm], a [[m + p--1]/[2]]and a [p-1]. Each data set consisted of random
intesers in the range (0. 1000). Tables (11 & (2} record the actual computing time in milliseconds. Table (1)
displavs the average computing times. For cach n, 30 random data sets were used, Tahle (2) shows the worst
case computing times for the 50 data sets.

Scanning the tables we immediately see that Quicksort is faster than Mergesort for all values. Even
though both alzorithms require Ofn log n) time on average, Quicksort usually performs well in practice.

n 1000 2000 3000 4000 S000
Merzeson 28 672 2751 3783 SiK6
Quicksort 366 85.1 1389 205-7 2660
I 00 T000 8000) 106K
Merzeson 676 7254 81135 5452 1073.6
Cuicksort 3394 411.0 487.7 5563 G45.2
Fig. . dverace computing Hmes for bwo sorting adgorithans on sandom inputs,

il | 00 200 3000 () 5000
Mergesort 105.7 2064 535.2 4221 589.9
Cuicksort 4.4 a7l 158.0 244 9 078

n 000 7000 8000 SO0 0000
Mergesor ho91.3 T94.8 BRO.5 1067.2 11676
Chirckson 383.8 4973 S6U.9 G162 738.1

Fig, 2 Worst case compuiitng times for 0w o serting algoritho an random inpars

Q. 3. State single source shortest path problem. Write an algorithm based on greedy method to
obtain solution to shortest path problem. Also discuss How running time is affected by representation of
Graph,

Ans. Single Source Shortest Path Problem; Graphs can be used to represent the highway structure of a
state or country with vertices representing cities & edges representing seetions of highway, The edges can
then be assigned weights which may be either the distance between the two cities connected by the edge or the
average time to drive along that section of highway, A motorist wishing to drive from city A to B would be
interested in answers to the following questions |

1. [s there & path from A 1o B.

2. If there is more than one path from A to B, which is the shonest path?

The problems defincd by these questions dre special cases of the path problems. The length of a path is
now defined to be the sum of the weights of the edges on that path. The starting vertex of the path is referred to
as the source & the last vertex the destination. The graphs are digraphs to allow for one way streets. In the
problem we consider, we are given a directed graph G = (v, E), a weighting function cost for the edges of G &
asource verlex V. The problem is to determine the shortest paths from Wy to all the remaining vertices of G.

It is assumed that all the weights are positive, The shorrest path between WV, & some other node v is un
erdering among a subset of the edges, Hence this problem fits the ordering par:idigm.
Greedy algorithm to generate shortest path,
{rAlgorithm shortest paths (v, cost, dist. n)
fdist [3). 1 =0 = 0. isset o the length of

http://studentsuvidha.in/

www.studentsuvidha.in

1 the shortest path from vertex v 1o verlex|
/1 ina digraph G with n vertices. dist [v)

! is sel to zero G is represented by lis cost
{f adjacency matrix cost [1:n, 1:n].

fori:=1tondo
| Hnitialize 8
8 [i]: = false; dist [i] ; = cost [v, il

S [v] : = true; dist [v]: = 0.0; // put v in 5 for num : =2 o n—1 do

M Determine n-1 paths from v,

Choose v from among those vertices not in S such that dist [u] is minimurn;
5 [u]: = true; Vput win s
for (each w adjacent o u with 5[w] = false) do

Hupdate distances

if {dist fw] = dist [u] + cost [u, w])) then

dist [w] ; = dist [u] + cost [u, w];

i

L}
i

The time taken by the algorithm on a graph with n vertices is 0’{112 } . Any shortest path algorithm must
examine each edge in the graph at least once since any of the edges could be in a shortest path. Hence, the

minimum possible time for such an algorithm would be £ E|) . Since cost adjacency materices were used to

represent the araph, it takes [U{ﬂzn time just to determine which edges are in G, & so any shortest path

Y 3 p p i
algorithm using this representation must take ﬁ[’ﬂ } time,

€. 4. (a) Discuss the Dynamic programming technique. Also discuss the main difference between
greedy method & dynamic programming with the help of example.

Ans. Dynamic programming, like the divide-and-conquer method, solves problems by combining the
solutions to subproblems. Dynamic programming is applicable when the subproblems are not independent,
that is. when subproblems share subsubproblems. A dynami¢ programming algorithm solves every sub sub-
problem just once and then saves its answer in a table, there by avoiding the work of recomputing the answer
every lime the subsubproblem is encountered. The development of a dynamic-programming algorithm can be
broken imo a sequence of four steps.

1. Characterize the structure of an optimal solution.

Recursively define the value of an optimal solution.

Compute the value of an optimal solution in a bottom-up fashion,

Construct an optimal solution from computed information. A greedy algorithm always makes the
choice that looks best at the moment. That is. it makes a locally optimal cheice in the hope that this

3 L3 b

http://studentsuvidha.in/

www.studentsuvidha.in

choice will lead to a globally optimal selution. This explores optimization problems that are soluble by
greedy algorithm. Greedy algorithms do not always vield optimal solutions. but for many problems
they do. The greedy method is quite powerful and works well for a wide range of problems,

0. 4. (b} State (/] Knapsack problem. Apply Dynamic programming technique to solve this problem.
Ans (/1 Knapsack : A solution to the knapsack problem can be obtained by making a sequence of

decisions on the variables x;,%5......x, . A decision on variable x; involves determining which of the values
(0 or § 15 10 be assigned 10 it. Let us assume that decisions on the x; are made in the order x5, ,..0%.
l'ollowing a decision on x, . we may be in one of two possible stutes - the capacity remaining in the knapsack
is m and no profit has acerued or the capacity remaiming is m—w , and a profit of p, hasaccreed, It is clear
that the remaining decisions x,,_;......x; must be optimal with respect to the problem state resulting from the

decision on %, Otherwise, x,...... % will not be optimal, Hence, the principle of optimality holds,

Let E'j{}'] be the value of an optimal solution w KNAP O, . v). Since the principle of optimality holds, we

obtain.

]

I, (m)= mam{ Fu-t{mbFolm—wy)+ py | 1)

For arbitrary £,(¥). i+ 0. equation (1) generalizes to

fiy) = max{f_y(¥)Fioi(y = wi)+p;] A2

Equation (2) can be solved for fi{m) by beginning with the knowledge foly)=10 for all v and
fify) = o,y <0.

Then F,F5....), can be successively computed using (2).

When the wi's. are integer, we need to compute f,(y} for integer v. 0 < y <m. Since f;(y)=-= fory _
<=0, these function values need not be computed explicitly. Since each f; can be computed from f,_, in 8{m)
time, it takes 9(mn} time to compute f,,. When the w's are real numbers, {;(y) is needed for real numbers
ysuch that 0=y =m. So f; cannot be explicitly computed for all y in this range. Even when the w,'s are
infeger, the explicit 8{mn) computation of f,, may not be the most efficient computation. So, we explore an

alternative method for both cases. Notice that f,(y) is an ascending step function, i.c., there are a finite

number of y's, O=wy.<y; <. <yy, such that fi{y,)< t",hz]-::....‘;.l‘i{yk]n; ffy) == . yey;
fly)=flyx). y 2 yicand fi(y) = Fily;), yi Sy<yj+l.
So. we need to compute only {] f}'J:I. 1< j<k. We use the ordered ser §' = {(l'{}',].y.} 1= j= Ir.} o

represent £;(y). Each member of g1 is a pair (p. w), where P =1 f_:r'_,}ll and W =¥, Notice that g0 = {{[}{])} A

We can compute §'*F from 8" by first computing.

http://studentsuvidha.in/

www.studentsuvidha.in

3 ={{p.“‘}-"{p- p,.w—wi}nﬁ'l. . i3
Now 5! can be computed by merging the pairs in ¢ and Sil together, Note that if §'*! contains two

pairs {p.w) and (pe.wy) with the property that Py £ P and W, =Wy, then the pair {Pj.n-'-',] can be
discarded because of (2), Discarding or purging rules such as this one are alse known as dominance rules.
Dominated wples ved purzed. In the above (p.wy) dominates [pJ W t} . Interestingly, the strategy we have
come up with can also be derived by attempting to solve the knapsack problem via a systematic examination of

thie up o 27 possibilities for xy.x5,..0%, . Let gf represent the possible states resulting from the 50 decision
sequences for 3 p.00x, . A state refiers toa pair [PPW |}- W, being the wtal weizght of objects included in the

knapsack and Py being the corvesponding profit, To obtain gi-1, we note that the possibilities for Xy, are
Npppen o Xy = 1o When x) =0, the resulting states are the same as for ¢, When x,_; = | the resulting

states are obtained by adding (pi, ., 4) to each state in g call the set of these additional states %) The S'I

is the same as in equation (3. Now 51 can be computed by merging the states in §' and 5} together.

(). 5. (2) What do vou understand by Back tracking? Discuss.
Ans, Backiracking represents one of the most general technique. In many applications of the backtrack

methodl, the desired solulion is expressible as an n-tuple (%%,), where the x; are chosen from some
finite sc1 5, . Ofien the problem to be solved calls for linding one vector that maximizes a criterion function
Pl %,) Sometimes it secks all vectors that satisfy P. For example, sorting the array of integers ina [

n [is a problem whose solution is expressible by an n-tuple where %, is the index in a olthe ith smallest element,

[he criterion function P is the inequality u[x.] = a[h,,ll for 1 <i<n. The set 5, is finite and includes the
itegers | throwgh n Though soning is not usually one of the problems solved by backiracking, it is one
example of a famibar problem whose solution can be formulated as an n-tuple.

€. 5, (b) What are Hamiltonian cyeles? Determine the order of Magnitude of the worst-case running
time for the back tracking procedure that finds all Hamiltonian cyeles,

Ans, Hamiltonian Cyeles : Let G = (V, E) be a connected graph with n vertices, A Hamiltonian eycle isa
round-trip path along n edges of G that visits every verlex once and returns to its starting position. In other

words it a Hamiltonian cycle beains at same vertex V), € G and the vertices of G are visited in the order

Vi Vi Vs thenthe edges (V. V) areinE, | < i< n.andthe V, are distinct except for ¥y and V.

el e
which are equal.

| Alzorithm Hamiltonian (K,

2 Vhis aleorithm uses the recursive formulation of,

3 {Back-tracking 1o find all the Hamiltoman exveles.

http://studentsuvidha.in/

www.studentsuvidha.in

/{ of a graph. The graph is stored as an adjacency.
AMatrin G 1o 1 on). All eyveles begin atnode 1.

i
)

Repeat
1 /Generate values for x [k]
Next value (k) /7 Assign a legal next value to x [K].

0. I (x [k] = 0} then retum;

tL ik =nhthen write{x [1:n])

12, Else Hamiltonian (k + 1)

3.} Unul (false);

4. |

Q. & {a) Expliin Branch & Bound Design strategy with the help of example.

Ans. The term branch-and-bound refers to all state space search methods in which all children of the E-
node are generated before any other live node can become the E-node. We have already seen two graph search
strategies, BFS and D-search, in which the exploration of a new pode cannot begin until the node currently
being explored is fully explored. Both of these generalize to branch-and-bound stratepies. In branch-and-
bound terminology, a BFS-like state space search will be called FIFO (First-In-First-Cut) search as the list of
live nodes is a first-in-first-out list (or queue). A D-search like state space search will be called.

LIFO {Last-In-First-Out} search as the list of live nodes is a last-in-first-out Hst {or stack). As in the case
of backiracking, bounding functions are used to help avoid the generation of subtrees that do not contain an
answer node.,

Q. 6. (b} Consider the following traveling sales person instance defined by the cost Matrix :

=

[7 3 12 8]
J = 6 14 9
5 B = 6 18
5 3 5 = |1
13 14 9 8 o]
Obtain the reduced cost matrix.
[z 7 3 12 8]
3 oo 6 14 9
5 8§ o« 18
Ans, § 3 5 & 11
18 14 9 8 =
(e @& = = =™
w2 owm I 2 0
0 o' 0 2
15 = 2 == 0
11 = 0 12 =| /

http://studentsuvidha.in/

www.studentsuvidha.in

oo o n W
|l = o 2 0
w 3 o O 2
4 3 = = {
(0 0 = (2 o
Reduced upto
-ﬂﬂ oy oah oo 'I'-
a0 90 99 0 ad
0 oo oo @ @
o ob o0 ob ob
| @ 0 o o |
Q. 7. Discuss following :
{a} NP Word Problems, {b) NP Complete Problems,
{¢) Cook's theorem, {d) Satisfiability.

Ans. () & (b) -NP Word Problems and NP complete Prablems : The theory of NP-completeness which
we present here does not provide a method of obtaining polynomial time algorithms for problems in the second
group. Nor does it say that algorithms of this complexity do not exist. Instead, what we do is show that many
of the problems for which there are no known polynomial time algorithms are computationally related. In fact,
wie establish two classes of problems. These are given the names NP-hard and NP-complete. A problem that is
NP-complete has the property that it can be selved in polynomial time if and only if all other NP-complete
problems can also be solved in polynomial time. [f an NP-hard problem can be solved in polynomial time, then
all NP-complete problems can be solved in polynomial time. All NP-complete problems are NP-hard, but some
NP-hard problems are hot known to be NP-complete. Although one can define many distinct problem classes
having the properiies siated above for the NP-hard and NP-complete classes, the classes we siudy are refated
10 nondeterministic computations (to be defined fater). The relationship of these classes to nondeterministic
computations together with the apparent power of nondererminism leads to the intuitive (though as yet
unproved) conclusion that no NP-complete or NP-hard problem is polynomially solvable.

{c) Cook's Theorem : Cook's theorem states that satisfiability is in P ifand only if P = NP, We now prove
this important theorem. We have already seen that satistiability is in NP. Hence if P= NP, then satisfiability is in
P. It remains to be shown that if satisfiability 1s in P, then P = NP. To do this, we show how to obtain from any
polynomial time nondeterministic decision algorithm A and input | a formula Q (A, 1) such that Q is satisfiable
iff A has a successful termination with input 1. Ifthe length & | is n and the time complexity of A is p(n) for some

polvnomial P (), then the length of Q is D[Pj{n}l.l:l-g n} =0(p"(n)). The time needed to construct Q s also

= {}[p-‘{n}]ag_ n}. A deterministic algorithm 2 1o determine the outcome of A on any input | can be easily

obrained. Algorithm z simply computes Q and then uses a deterministic algorithm for the satisfiability problem
lo determine whether Q is satisfiable. If O(q{m}) is the time needed to determine whether a formuta of length

m is satisfiable, then the complexity of 2 is 0{p3 (n)logn + q(pi[n} log n}) Af satisfiability is in P, then q (m) is

http://studentsuvidha.in/

www.studentsuvidha.in

satisfiability is in p, then for every nondeterministic algorithm A in NP we can obtain a deterministic Zin P. So,
the above construction shows that if satisfiability is in P, then P = NP,

(d) Satisfiability : Let x,,x;..... denote boolean variables (their value is either true or false). Let X;

denote the negation of %; . A literal is either variable or its negation. A formula in the propositional calculus is
an expression that can be constructed using literals and the operations and or. Example of such formulas are

(xpAxa)v{x3n%y) and (x3v¥y)A(x;vEs). The symbol denote orand » denotesand A formula is in

conjunctive normal form (CNFY if and only if it is represented as AL;ti. where the ¢, are clauses each
represented as V15 . The 1jj are literals. It is in disjunctive normal form (DNF) if and only if it is represented as
vk C, and each clause C, is represented as Aljj. Thus (x;ax;)v(x3ARy) is in DNF whereas

(x3w¥y)A(x;vX;) isin CNF. The satisfiability problem is to determine whether a formula is true for some
assignment of truth values to the variables. CNF-Satisfiability is the satisfiability probler: for CNF formulas. It
is easy to obtain a polynomial time nondeterministic algorithm that terminates successfully if and only if a given

propositional formula E{xy,...,x,) is satisfiable. Such an algorithm could proceed by simply choosing
(nondeterministically) one of the ;" possible assignment of truth values to (x,.......,%,) and verifying that

Elx.a %) 15 true for that assignment.

). B. (a) Discuss differept technigues for algebraic problems,

Ans, A system that aliows for the manipulation of mathematical expressions (usually including arbitrary
precision integers, polynomials and rational functions) is called a mathematical symbol manipulation system.
These system have been truthfully used to solve a variety of scientific problems for many years. The tech-
niques we study here have often led to efficient ways to implement the operations offered by these systems.
The first design technique we present is called algebraic transformation. Assume we have an input 1 that is a

memebr of set 5; and a function F (1) that describes what must be computed. Usually the output f(I) is also a

members of S, . Though a method may exist for computing f(1) using operations on elements in S|, this method
may be inefficient. The algebraic transformation technique suggests that we alter the input into another form to
produce a member of set 5;. The set S; contains exactly the same elements as S| except it assumes a different
representation for them. Why would be transform the input into another form? Because it ma;' be easier to
compute the function f for elements of S; then for elements of 5, . Once the answer in S; is computed, an

inverse transformation is performed to yield the result in set ;.

Q. 8. (b) What do you understand by optimal Binary Search Tree? Justify significance of OBST with the
help of suitable example.

Ans. To apply dynamic programming to the problem of obtaining an optimal binary search tree, we need
to view the construction of such a tree as the result of a sequence of decisions and then observe *hat the
principle of optimality holds when applied to the problem state resulting from a decision. A possible approach

to this would be to make a decision as to which of the a;'s should be assigned to the root node of the tree. If

we choose ay . then it is clear that the internal nods for aj,a,,.....a;_; as well as the external nodes for the

http://studentsuvidha.in/

www.studentsuvidha.in

classes, Egy.Ey.....Eg_ywill be lie in the left subtree L of the root. The remaining nodes will be in the right

subtree r. Delins,

cost(i}= 3 pli)*level(a;)+ 3 qli)*(level(E;)-1)

1<i<k i<k
o cost(r)= 3 p(i)*level{a,)+ 3 qli)*(level(E,)-1)
k<i= K=izn

In both cases the level is measured by regarding the root of the respective subtree to be at level 1.

i r
Fig. An optimal binary search tree with root ay,
i
Using w (i. j) to represent the sum q{i)+ 2 {q(i}+p(1]} , we obtain the following as the expected cost of
I=i+l

the search tree (Figure 1.)
plk)+cost(l) + cost(r)+ w0,k — 1} + w(k,n) AD
If the tree is optimal, then (1) must be minimum. Hence cos 1 (1) must be minimum over all binary search
trees containing a|,a3,...,8)_ and EgsEverrer Ep - - Similarly cost (r) must be minimum. Ifweuse C(i,j)to

represent the cost of an optimal binary search tree ' j containing 8y41s.0008; and Ejs..oe., Ej, then for the

tree to be optimal. We must have cost(f) = ¢(0,k -1} and cost{r] = e{k,n). In addition, k must be chosen such
that,
p(k)+e(0,k —1) +e(k,n)+w(0,k~ 1)+ w(k,n) is minimum. Hence for ¢(0,n) we obtain
c(0.n) = min {c{0,k — 1)+ [k.n]} + p(k k-1 k.
(0.n) = min {c(0,k 1)+ cfk.n]} + plk) + w(0.k = 1)+ w(k,n) @
We can generalize (2) to obtain for any ¢ (i, j)

efi,j) = Iﬂigj{c{i,k = 1)+ ek i} + p(k)+w(ick = 1)+ w(k, j)

c(i,j) = Iﬂi;{c{ ik =1)+efk, i)+ w(i.j)} A3)

Equation (3} can be solved for ¢ (0, n) by first computing all ¢ (i,) such that j—i=1 (note ¢(i,i) =0 and

w (i, i)=q(i). 0 <i<n) MNextwecancomputeallc(i,j)suchthat j—i=2 thenall c(i,j) with j—i=3 andso
on. If during this computation we record the root r(i, jj of each tree U, then an optimal binary search tree can

be constructed from these (i, j). Note that r (i, j) is the value of k that minimizes.

http://studentsuvidha.in/

