
Chapter 6

The Schrödinger Wave Equation

So far, we have made a lot of progress concerning the properties of, and interpretation of
the wave function, but as yet we have had very little to say about how the wave function
may be derived in a general situation, that is to say, we do not have on hand a ‘wave
equation’ for the wave function. There is no true derivation of this equation, but its form
can be motivated by physical and mathematical arguments at a wide variety of levels of
sophistication. Here, we will offer a simple derivation based on what we have learned so
far about the wave function.

The Schrödinger equation has two ‘forms’, one in which time explicitly appears, and so
describes how the wave function of a particle will evolve in time. In general, the wave
function behaves like a wave, and so the equation is often referred to as the time dependent
Schrödinger wave equation. The other is the equation in which the time dependence
has been ‘removed’ and hence is known as the time independent Schrödinger equation
and is found to describe, amongst other things, what the allowed energies are of the
particle. These are not two separate, independent equations – the time independent
equation can be derived readily from the time dependent equation (except if the potential
is time dependent, a development we will not be discussing here). In the following we
will describe how the first, time dependent equation can be ‘derived’, and in then how the
second follows from the first.

6.1 Derivation of the Schrödinger Wave Equation

6.1.1 The Time Dependent Schrödinger Wave Equation

In the discussion of the particle in an infinite potential well, it was observed that the
wave function of a particle of fixed energy E could most naturally be written as a linear
combination of wave functions of the form

Ψ(x, t) = Aei(kx−ωt) (6.1)

representing a wave travelling in the positive x direction, and a corresponding wave trav-
elling in the opposite direction, so giving rise to a standing wave, this being necessary
in order to satisfy the boundary conditions. This corresponds intuitively to our classical
notion of a particle bouncing back and forth between the walls of the potential well, which
suggests that we adopt the wave function above as being the appropriate wave function
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Chapter 6 The Schrödinger Wave Equation 43

for a free particle of momentum p = !k and energy E = !ω. With this in mind, we can
then note that

∂2Ψ
∂x2

= −k2Ψ (6.2)

which can be written, using E = p2/2m = !2k2/2m:

− !2

2m

∂2Ψ
∂x2

=
p2

2m
Ψ. (6.3)

Similarly
∂Ψ
∂t

= −iωΨ (6.4)

which can be written, using E = !ω:

i!∂Ψ
∂t

= !ωψ = EΨ. (6.5)

We now generalize this to the situation in which there is both a kinetic energy and a
potential energy present, then E = p2/2m + V (x) so that

EΨ =
p2

2m
Ψ + V (x)Ψ (6.6)

where Ψ is now the wave function of a particle moving in the presence of a potential V (x).
But if we assume that the results Eq. (6.3) and Eq. (6.5) still apply in this case then we
have

− !2

2m

∂2ψ

∂x2
+ V (x)Ψ = i!∂ψ

∂t
(6.7)

which is the famous time dependent Schrödinger wave equation. It is setting up and
solving this equation, then analyzing the physical contents of its solutions that form the
basis of that branch of quantum mechanics known as wave mechanics.

Even though this equation does not look like the familiar wave equation that describes,
for instance, waves on a stretched string, it is nevertheless referred to as a ‘wave equation’
as it can have solutions that represent waves propagating through space. We have seen an
example of this: the harmonic wave function for a free particle of energy E and momentum
p, i.e.

Ψ(x, t) = Ae−i(px−Et)/! (6.8)

is a solution of this equation with, as appropriate for a free particle, V (x) = 0. But this
equation can have distinctly non-wave like solutions whose form depends, amongst other
things, on the nature of the potential V (x) experienced by the particle.

In general, the solutions to the time dependent Schrödinger equation will describe the
dynamical behaviour of the particle, in some sense similar to the way that Newton’s
equation F = ma describes the dynamics of a particle in classical physics. However, there
is an important difference. By solving Newton’s equation we can determine the position
of a particle as a function of time, whereas by solving Schrödinger’s equation, what we
get is a wave function Ψ(x, t) which tells us (after we square the wave function) how the
probability of finding the particle in some region in space varies as a function of time.

It is possible to proceed from here look at ways and means of solving the full, time
dependent Schrödinger equation in all its glory, and look for the physical meaning of
the solutions that are found. However this route, in a sense, bypasses much important
physics contained in the Schrödinger equation which we can get at by asking much simpler
questions. Perhaps the most important ‘simpler question’ to ask is this: what is the wave
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Chapter 6 The Schrödinger Wave Equation 44

function for a particle of a given energy E? Curiously enough, to answer this question
requires ‘extracting’ the time dependence from the time dependent Schrödinger equation.
To see how this is done, and its consequences, we will turn our attention to the closely
related time independent version of this equation.

6.1.2 The Time Independent Schrödinger Equation

We have seen what the wave function looks like for a free particle of energy E – one or the
other of the harmonic wave functions – and we have seen what it looks like for the particle
in an infinitely deep potential well – see Section 5.3 – though we did not obtain that result
by solving the Schrödinger equation. But in both cases, the time dependence entered into
the wave function via a complex exponential factor exp[−iEt/!]. This suggests that to
‘extract’ this time dependence we guess a solution to the Schrödinger wave equation of
the form

Ψ(x, t) = ψ(x)e−iEt/! (6.9)

i.e. where the space and the time dependence of the complete wave function are contained
in separate factors1. The idea now is to see if this guess enables us to derive an equation
for ψ(x), the spatial part of the wave function.

If we substitute this trial solution into the Schrödinger wave equation, and make use of
the meaning of partial derivatives, we get:

− !2

2m

d2ψ(x)
dx2

e−iEt/! +V (x)ψ(x)e−iEt/! = i!.− iE/!e−iEt/!ψ(x) = Eψ(x)e−iEt/!. (6.10)

We now see that the factor exp[−iEt/!] cancels from both sides of the equation, giving
us

− !2

2m

d2ψ(x)
dx2

+ V (x)ψ(x) = Eψ(x) (6.11)

If we rearrange the terms, we end up with

!2

2m

d2ψ(x)
dx2

+
(
E − V (x)

)
ψ(x) = 0 (6.12)

which is the time independent Schrödinger equation. We note here that the quantity E,
which we have identified as the energy of the particle, is a free parameter in this equation.
In other words, at no stage has any restriction been placed on the possible values for E.
Thus, if we want to determine the wave function for a particle with some specific value of E
that is moving in the presence of a potential V (x), all we have to do is to insert this value
of E into the equation with the appropriate V (x), and solve for the corresponding wave
function. In doing so, we find, perhaps not surprisingly, that for different choices of E we
get different solutions for ψ(x). We can emphasize this fact by writing ψE(x) as the solution
associated with a particular value of E. But it turns out that it is not all quite as simple
as this. To be physically acceptable, the wave function ψE(x) must satisfy two conditions,
one of which we have seen before namely that the wave function must be normalizable (see
Eq. (5.3)), and a second, that the wave function and its derivative must be continuous.
Together, these two requirements, the first founded in the probability interpretation of the
wave function, the second in more esoteric mathematical necessities which we will not go
into here and usually only encountered in somewhat artificial problems, lead to a rather
remarkable property of physical systems described by this equation that has enormous
physical significance: the quantization of energy.

1A solution of this form can be shown to arise by the method of ‘the separation of variables’, a well
known mathematical technique used to solve equations of the form of the Schrödinger equation.
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The Quantization of Energy

At first thought it might seem to be perfectly acceptable to insert any value of E into
the time independent Schrödinger equation and solve it for ψE(x). But in doing so we
must remain aware of one further requirement of a wave function which comes from its
probability interpretation: to be physically acceptable a wave function must satisfy the
normalization condition, Eq. (5.3)∫ +∞

−∞
|Ψ(x, t)|2 dx = 1

for all time t. For the particular trial solution introduced above, Eq. (6.9):

Ψ(x, t) = ψE(x)e−iEt/! (6.13)

the requirement that the normalization condition must hold gives, on substituting for
Ψ(x, t), the result2 ∫ +∞

−∞
|Ψ(x, t)|2 dx =

∫ +∞

−∞
|ψE(x)|2 dx = 1. (6.14)

Since this integral must be finite, (unity in fact), we must have ψE(x) → 0 as x → ±∞
in order for the integral to have any hope of converging to a finite value. The importance
of this with regard to solving the time dependent Schrödinger equation is that we must
check whether or not a solution ψE(x) obtained for some chosen value of E satisfies the
normalization condition. If it does, then this is a physically acceptable solution, if it
does not, then that solution and the corresponding value of the energy are not physically
acceptable. The particular case of considerable physical significance is if the potential V (x)
is attractive, such as would be found with an electron caught by the attractive Coulomb
force of an atomic nucleus, or a particle bound by a simple harmonic potential (a mass on
a spring), or, as we have seen in Section 5.3, a particle trapped in an infinite potential well.
In all such cases, we find that except for certain discrete values of the energy, the wave
function ψE(x) does not vanish, or even worse, diverges, as x → ±∞. In other words, it
is only for these discrete values of the energy E that we get physically acceptable wave
functions ψE(x), or to put it more bluntly, the particle can never be observed to have
any energy other than these particular values, for which reason these energies are often
referred to as the ‘allowed’ energies of the particle. This pairing off of allowed energy and
normalizable wave function is referred to mathematically as ψE(x) being an eigenfunction
of the Schrödinger equation, and E the associated energy eigenvalue, a terminology that
acquires more meaning when quantum mechanics is looked at from a more advanced
standpoint.

So we have the amazing result that the probability interpretation of the wave function
forces us to conclude that the allowed energies of a particle moving in a potential V (x)
are restricted to certain discrete values, these values determined by the nature of the po-
tential. This is the phenomenon known as the quantization of energy, a result of quantum
mechanics which has enormous significance for determining the structure of atoms, or, to
go even further, the properties of matter overall. We have already seen an example of this
quantization of energy in our earlier discussion of a particle in an infintely deep potential

2Note that the time dependence has cancelled out because

|Ψ(x, t)|2 = |ψE(x)e−iEt/! |2 = |ψE(x)|2|e−iEt/! |2 = |ψE(x)|2

since, for any complex number of the form exp(iφ), we have | exp(iφ)|2 = 1.
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well, though we did not derive the results by solving the Schrödinger equation itself. We
will consider how this is done shortly.

The requirement that ψ(x) → 0 as x → ±∞ is an example of a boundary condition.
Energy quantization is, mathematically speaking, the result of a combined effort: that
ψ(x) be a solution to the time independent Schrödinger equation, and that the solution
satisfy these boundary conditions. But both the boundary condition and the Schrödinger
equation are derived from, and hence rooted in, the nature of the physical world: we have
here an example of the unexpected relevance of purely mathematical ideas in formulating
a physical theory.

Continuity Conditions There is one additional proviso, which was already mentioned
briefly above, that has to be applied in some cases. If the potential should be discontinuous
in some way, e.g. becoming infinite, as we have seen in the infinite potential well example,
or having a finite discontinuity as we will see later in the case of the finite potential well, it is
possible for the Schrödinger equation to have solutions that themselves are discontinuous.
But discontinuous potentials do not occur in nature (this would imply an infinite force),
and as we know that for continuous potentials we always get continuous wave functions,
we then place the extra conditions that the wave function and its spatial derivative also
must be continuous3. We shall see how this extra condition is implemented when we look
at the finite potential well later.

Bound States and Scattering States But what about wave functions such as the
harmonic wave function Ψ(x, t) = A exp[i(kx − ωt)]? These wave functions represent a
particle having a definite energy E = !ω and so would seem to be legitimate and necessary
wave functions within the quantum theory. But the problem here, as has been pointed
out before in Chapter 5, is that Ψ(x, t) does not vanish as x → ±∞, so the normalization
condition, Eq. (6.14) cannot be satisfied. So what is going on here? The answer lies
in the fact that there are two kinds of wave functions, those that apply for particles
trapped by an attractive potential into what is known as a bound state, and those that
apply for particles that are free to travel to infinity (and beyond), otherwise known as
scattering states. A particle trapped in an infinitely deep potential well is an example
of the former: the particle is confined to move within a restricted region of space. An
electron trapped by the attractive potential due to a positively charged atomic nucleus
is also an example – the electron rarely moves a distance more than ∼10 nm from the
nucleus. A nucleon trapped within a nucleus by attractive nuclear forces is yet another. In
all these cases, the probability of finding the particle at infinity is zero. In other words, the
wave function for the particle satisfies the boundary condition that it vanish at infinity.
So we see that it is when a particle is trapped, or confined to a limited region of space
by an attractive potential V (x) (or V (r) in three dimensions), we obtain wave functions
that satisfy the above boundary condition, and hand in hand with this, we find that their
energies are quantized. But if it should be the case that the particle is free to move as
far as it likes in space, in other words, if it is not bound by any attractive potential,
(or even repelled by a repulsive potential) then we find that the wave function need not
vanish at infinity, and nor is its energy quantized. The problem of how to reconcile this
with the normalization condition, and the probability interpretation of the wave function,
is a delicate mathematical issue which we cannot hope to address here, but it can be
done. Suffice to say that provided the wave function does not diverge at infinity (in

3The one exception is when the discontinuity is infinite, as in the case of the infinite potential well. In
that case, only the wave function is reguired to be continuous.
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other words it remains finite, though not zero) we can give a physical meaning of such
states as being an idealized mathematical limiting case which, while it does not satisfy the
normalization condition, can still be dealt with in, provided some care is taken with the
physical interpretation, in much the same way as the bound state wave functions.

In order to illustrate how the time independent Schrödinger equation can be solved in
practice, and some of the characteristics of its solutions, we will here briefly reconsider the
infinitely deep potential well problem, already solved by making use of general properties
of the wave function, in Section 5.3. We will then move on to looking at other simple
applications.

6.2 Solving the Time Independent Schrödinger Equation

6.2.1 The Infinite Potential Well Revisited

Suppose we have a single particle of mass m confined to within a region 0 < x < L with
potential energy V = 0 bounded by infinitely high potential barriers, i.e. V = ∞ for x < 0
and x > L. The potential experienced by the particle is then:

V (x) = 0 0 < x < L (6.15)
= ∞ x ≥ L; x ≤ 0 (6.16)

In the regions for which the potential is infinite, the wave function will be zero, for exactly
the same reasons that it was set to zero in Section 5.3, that is, there is zero probability of
the particle being found in these regions. Thus, we must impose the boundary conditions

ψ(0) = ψ(L) = 0. (6.17)

Meanwhile, in the region 0 < x < L, the potential vanishes, so the time independent
Schrödinger equation becomes:

− !2

2m

d2ψ(x)
dx2

= Eψ(x). (6.18)

To solve this, we define a quantity k by

k =
√

2mE

!2
(6.19)

so that Eq. (6.18) can be written

d2ψ(x)
dx2

+ k2ψ(x) = 0 (6.20)

whose general solution is

ψ(x) = A sin(kx) + B cos(kx). (6.21)

It is now that we impose the boundary conditions, Eq. (6.17), to give, first at x = 0:

ψ(0) = B = 0 (6.22)

so that the solution is now
ψ(x) = A sin(kx). (6.23)
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Next, applying the boundary condition at x = L gives

ψ(L) = A sin(kL) = 0 (6.24)

which tells us that either A = 0, in which case ψ(x) = 0, which is not a useful solution
(it says that there is no partilce in the well at all!) or else sin(kL) = 0, which gives an
equation for k:

kL = nπ, n = 0,±1,±2, . . . . (6.25)

We exclude the n = 0 possibility as that would give us, once again ψ(x) = 0, and we
exclude the negative values of n as the will merely reproduce the same set of solutions
(except with opposite sign4) as the positive values. Thus we have

kn = nπ/L, n = 1, 2, . . . (6.26)

where we have introduced a subscript n. This leads to, on using Eq. (6.19),

En =
!2k2

n

2m
=

n2π2!2

2mL2
, n = 1, 2, . . . (6.27)

as before in Section 5.3. Thus we se that the boundary conditions, Eq. (6.17), have the
effect of restricting the values of the energy of the particle to those given by Eq. (6.27).
The associated wave functions will be as in Section 5.3, that is we apply the normalization
condition to determine A (up to an inessential phase factor) which finally gives

ψn(x) =
√

2
L

sin(nπx/L) 0 < x < L

= 0 x < 0, x > L. (6.28)

6.2.2 The Finite Potential Well

The infinite potential well is a valuable model
since, with the minimum amount of fuss, it
shows immediately the way that energy quan-
tization as potentials do not occur in nature.
However, for electrons trapped in a block of
metal, or gas molecules contained in a bottle,
this model serves to describe very accurately
the quantum character of such systems. In such
cases the potential experienced by an electron as
it approaches the edges of a block of metal, or as
experienced by a gas molecule as it approaches
the walls of its container are effectively infinite

V0

x
0

L

V (x)

Figure 6.1: Finite potential well.

as far as these particles are concerned, at least if the particles have sufficently low kinetic
energy compared to the height of these potential barriers.

But, of course, any potential well is of finite depth, and if a particle in such a well has an
energy comparable to the height of the potential barriers that define the well, there is the
prospect of the particle escaping from the well. This is true both classically and quantum
mechanically, though, as you might expect, the behaviour in the quantum mechanical case
is not necessarily consistent with our classical physics based expectations. Thus we now
proceed to look at the quantum properties of a particle in a finite potential well.

4The sign has no effect on probabilities as we always square the wave function.
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In this case, the potential will be of the form

V (x) = 0 0 < x < L (6.29)
= V x ≥ L x ≤ 0 (6.30)

i.e. we have ‘lowered’ the infinite barriers to a finite value V . We now want to solve the
time independent Schrödinger equation for this potential.

To do this, we recognize that the problem can be split up into three parts: x ≤ 0 where
the potential is V , 0 < x < L where the potential is zero and x ≥ 0 where the potential is
once again V . Therefore, to find the wave function for a particle of energy E, we have to
solve three equations, one for each of the regions:

!2

2m

d2ψ(x)
dx2

+ (E − V )ψ(x) = 0 x ≤ 0 (6.31)

!2

2m

d2ψ(x)
dx2

+ Eψ(x) = 0 0 < x < L (6.32)

!2

2m

d2ψ(x)
dx2

+ (E − V )ψ(x) = 0 x ≥ L. (6.33)

The solutions to these equations take different forms depending on whether E < V or
E > V . We shall consider the two cases separately.

E < VE < VE < V

First define

k =
√

2mE

!2
and α =

√
2m(V − E)

!2
. (6.34)

Note that, as V > E, α will be a real number, as it is square root of a positive number.
We can now write these equations as

d2ψ(x)
dx2

− α2ψ(x) = 0 x ≤ 0 (6.35)

d2ψ(x)
dx2

+ k2ψ(x) = 0 0 < x < L (6.36)

d2ψ(x)
dx2

− α2ψ(x) = 0 x ≥ L. (6.37)

Now consider the first of these equations, which will have as its solution

ψ(x) = Ae−αx + Be+αx (6.38)

where A and B are unknown constants. It is at this point that we can make use of our
boundary condition, namely that ψ(x) → 0 as x → ±∞. In particular, since the solution
we are currently looking at applies for x < 0, we should look at what this solution does
for x → −∞. What it does is diverge, because of the term A exp(−αx). So, in order to
guarantee that our solution have the correct boundary condition for x → −∞, we must
have A = 0. Thus, we conclude that

ψ(x) = Beαx x ≤ 0. (6.39)

We can apply the same kind of argument when solving Eq. (6.37) for x ≥ L. In that case,
the solution is

ψ(x) = Ce−αx + Deαx (6.40)
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but now we want to make certain that this solution goes to zero as x →∞. To guarantee
this, we must have D = 0, so we conclude that

ψ(x) = Ce−αx x ≥ L. (6.41)

Finally, at least for this part of the argument, we look at the region 0 < x < L. The
solution of Eq. (6.36) for this region will be

ψ(x) = P cos(kx) + Q sin(kx) 0 < x < L (6.42)

but now we have no diverging exponentials, so we have to use other means to determine
the unknown coefficients P and Q.

At this point we note that we still have four unknown constants B, P , Q, and C. To
determine these we note that the three contributions to ψ(x) do not necessarily join
together smoothly at x = 0 and x = L. This awkward state of affairs has its origins in
the fact that the potential is discontinuous at x = 0 and x = L which meant that we had
to solve three separate equations for the three different regions. But these three separate
solutions cannot be independent of one another, i.e. there must be a relationship between
the unknown constants, so there must be other conditions that enable us to specify these
constants. The extra conditions that we impose, as discussed in Section 6.1.2, are that
the wave function has to be a continuous function, i.e. the three solutions:

ψ(x) = Beαx x ≤ 0 (6.43)
= P cos(kx) + Q sin(kx) 0 < x < L (6.44)
= Ce−αx x ≥ L. (6.45)

should all ‘join up’ smoothly at x = 0 and x = L. This means that the first two solutions
and their slopes (i.e. their first derivatives) must be the same at x = 0, while the second
and third solutions and their derivatives must be the same at x = L. Applying this
requirement at x = 0 gives:

B = P (6.46)
αB = kQ (6.47)

and then at x = L:

P cos(kL) + Q sin(kL) = Ce−αL (6.48)

−kP sin(kL) + kQ cos(kL) = −αCe−αL. (6.49)

If we eliminate B and C from these two sets of equations we get, in matrix form:(
α −k

α cos(kL)− k sin(kL) α sin(kL) + k cos(kL)

) (
P
Q

)
= 0 (6.50)

and in order that we get a non-trivial solution to this pair of homogeneous equations, the
determinant of the coefficients must vanish:∣∣∣∣ α −k

α cos(kL)− k sin(kL) α sin(kL) + k cos(kL)

∣∣∣∣ = 0 (6.51)

which becomes, after expanding the determinant and rearranging terms:

tan(kL) =
2αk

k2 − α2
. (6.52)
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Solving this equation for k will give the allowed values of k for the particle in this finite
potential well, and hence, using Eq. (6.34) in the form

E =
!2k2

2m
(6.53)

we can determine the allowed values of energy for this particle. What we find is that
these allowed energies are finite in number, in contrast to the infinite potential well, but
to show this we must solve this equation. This is made difficult to do analytically by
the fact that this is a transcendental equation – it has no solutions in terms of familiar
functions. However, it is possible to get an idea of what its solutions look like either
numerically, or graphically. The latter has some advantages as it allows us to see how the
mathematics conspires to produce the quantized energy levels. We can first of all simplify
the mathematics a little by writing Eq. (6.52) in the form

tan(kL) =
2(α/k)

1− (α/k)2
(6.54)

which, by comparison with the two trigonometric formulae

tan 2θ =
2 tan θ

1− tan2 θ

tan 2θ =
2 cot(−θ)

1− cot2(−θ)

we see that Eq. (6.52) is equivalent to the two conditions

tan(1
2kL) =

α

k
(6.55)

cot(−1
2kL) = − cot(1

2kL) =
α

k
. (6.56)

The aim here is to plot the left and right hand sides of these two expressions as a function
of k (well, actually as a function of 1

2kL), but before we can do that we need to take
account of the fact that the quantity α is given in terms of E by

√
2m(V − E)/!2, and

hence, since E = !2k2/2m, we have

α

k
=

√
V − E

E
=

√(k0

k

)2 − 1

where

k0 =
√

2mV

!2
. (6.57)

As we will be plotting as a function of 1
2kL, it is useful to rewrite the above expression for

α/k as
α

k
= f(1

2kL) =
√(

1
2k0L/1

2kL
)2 − 1. (6.58)

Thus we have

tan(1
2kL) = f(1

2kL) and − cot(1
2kL) = f(1

2kL). (6.59)

We can now plot tan(1
2kL), − cot(1

2kL) and f(1
2kL) as functions of 1

2kL for various values
for k0. The points of intersection of the curve f(1

2kL) with the tan and cot curves will
then give the kL values for an allowed energy level of the particle in this potential.
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This is illustrated in Fig. (6.2) where four such plots are given for different values of V .
The important feature of these curves is that the number of points of intersection is finite,
i.e. there are only a finite number of values of k that solve Eq. (6.52). Correspondingly,
there will only be a finite number of allowed values of E for the particle, and there will
always be at least one allowed value.
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Figure 6.2: Graph to determine bound states of a finite well potential. The points of intersection
are solutions to Eq. (6.52). The plots are for increasing values of V , starting with V lowest such
that 1

2k0L = 1, for which there is only one bound state, slightly higher at 1
2k0L = 2, for which

there are two bound states, slightly higher again for 1
2k0L = 3.8 where there are three bound

states, and highest of all, 1
2k0L = 6 for which there is four bound states.

To determine the corresponding wave functions is a straightforward but complicated task.
The first step is to show, by using Eq. (6.52) and the equations for B, C, P and Q that

C = eαLB (6.60)

from which readily follows the solution

ψ(x) = Beαx x ≤ 0 (6.61)

= B
(
cos kx +

α

k
sin kx

)
0 < x < L (6.62)

= Be−α(x−L) x ≥ L. (6.63)

The constant B is determined by the requirement that ψ(x) be normalized, i.e. that∫ +∞

−∞
|ψ(x)|2 dx = 1. (6.64)

which becomes:

|B|2
[ ∫ 0

−∞
e−2αx dx +

∫ L

0

(
cos kx +

α

k
sin kx

)2
dx +

∫ +∞

L
e−2α(x−L) dx

]
= 1. (6.65)
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After a somewhat tedious calculation that makes liberal use of Eq. (6.52), the result found
is that

B =
k

k0

√
α

1
2αL + 1

. (6.66)

The task of determining the wave functions is then that of determining the allowed values
of k from the graphical solution, or numerically, and then substituting those vaules into the
above expressions for the wave function. The wave functions found a similar in appearance
to the infinte well wave functions, with the big difference that they are non-zero outside
the well. This is true even if the particle has the lowest allowed energy, i.e. there is a non-
zero probability of finding the particle outside the well. This probability can be readily
calculated, being just

Poutside = |B|2
[ ∫ 0

−∞
e−2αx dx +

∫ +∞

L
e−2α(x−L) dx

]
= α−1|B|2 (6.67)

6.2.3 Scattering from a Potential Barrier

The above examples are of bound states, i.e. wherein the particles are confined to a lim-
ited region of space by some kind of attractive or confining potential. However, not all
potentials are attractive (e.g. two like charges repel), and in any case, even when there
is an attractive potential acting (two opposite charges attracting), it is possible that the
particle can be ‘free’ in the sense that it is not confined to a limited region of space. A
simple example of this, classically, is that of a comet orbiting around the sun. It is pos-
sible for the comet to follow an orbit in which it initially moves towards the sun, then
around the sun, and then heads off into deep space, never to return. This is an example
of an unbound orbit, in contrast to the orbits of comets that return repeatedly, though
sometimes very infrequently, such as Halley’s comet. Of course, the orbiting planets are
also in bound states.

A comet behaving in the way just described – coming in from infinity and then ultimately
heading off to infinity after bending around the sun – is an example of what is known as
a scattering process. In this case, the potential is attractive, so we have the possibility of
both scattering occurring, as well as the comet being confined to a closed orbit – a bound
state. If the potential was repulsive, then only scattering would occur.

The same distinction applies in quantum mechanics. It is possible for the particle to
confined to a limited region in space, in which case the wave function must satisfy the
boundary condition that

ψ(x) → 0 as x → ±∞.

As we have seen, this boundary condition is enough to yield the quantization of energy.
However, in the quantum analogue of scattering, it turns out that energy is not quantized.
This in part can be linked to the fact that the wave function that describes the scattering
of a particle of a given energy does not decrease as x → ±∞, so that the very thing that
leads to the quantization of energy for a bound particle does not apply here.

This raises the question of what to do about the quantization condition, i.e. that∫ +∞

−∞
|Ψ(x, t)|2dx = 1.

If the wave function does not go to zero as x → ±∞, then it is not possible for the
wave function to satisfy this normalization condition – the integral will always diverge.
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So how are we to maintain the claim that the wave function must have a probability
interpretation if one of the principal requirements, the normalization condition, does not
hold true? Strictly speaking, a wave function that cannot be normalized to unity is not
physically permitted (because it is inconsistent with the probability interpretation of the
wave function). Nevertheless, it is possible to retain, and work with, such wave functions,
provided a little care is taken. The answer lies in interpreting the wave function so that
|Ψ(x, t)|2 ∝ particle flux5, though we will not be developing this idea to any extent here.

To illustrate the sort of behaviour that we find with particle scattering, we will consider
a simple, but important case, which is that of a particle scattered by a potential barrier.
This is sufficient to show the sort of things that can happen that agree with our classical
intuition, but it also enables us to see that there occurs new kinds of phenomena that have
no explanation within classical physics.

Thus, we will investigate the scattering problem of a particle of energy E interacting with
a potential V (x) given by:

V (x) =0 x < 0
V (x) =V0 x > 0. (6.68)

V0

V (x)

Incoming particle

Reflected particle

0 x

Figure 6.3: Potential barrier with particle of energy E < V0 incident from the left. Classically,
the particle will be reflected from the barrier.

In Fig. (6.3) is illustrated what we would expect to happen if a classical particle of energy
E < V0 were incident on the barrier: it would simply bounce back as it has insufficient
energy to cross over to x > 0. Quantum mechanically we find that the situation is not so
simple.

Given that the potential is as given above, the Schrödinger equation comes in two parts:

− !2

2m

d2ψ

dx2
= Eψ x < 0

− !2

2m

d2ψ

dx2
+ V0ψ = Eψ x > 0 (6.69)

where E is, once again, the total energy of the particle.
5In more advanced treatments, it is found that the usual probability interpretation does, in fact, continue

to apply, though the particle is described not by a wave function corresponding to a definite energy, but
rather by a wave packet, though then the particle does not have a definite energy.
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We can rewrite these equations in the following way:

d2ψ

dx2
+

2mE

!2
ψ = 0 x < 0

d2ψ

dx2
− 2m

!2

(
V0 − E

)
ψ = 0 x > 0 (6.70)

If we put

k =
√

2mE

! (6.71)

then the first equation becomes

d2ψ

dx2
+ k2ψ = 0 x < 0

which has the general solution

ψ = Aeikx + Be−ikx (6.72)

where A and B are unknown constants. We can get an idea of what this solution means
if we reintroduce the time dependence (with ω = E/!):

Ψ(x, t) =ψ(x)e−iEt/! = ψ(x)e−iωt

=Aei(kx−ωt) + Be−i(kx+ωt)

=wave travel-
ling to right

+ wave travel-
ling to left

(6.73)

i.e. this solution represents a wave associated with the particle heading towards the barrier
and a reflected wave associated with the particle heading away from the barrier. Later
we will see that these two waves have the same amplitude, implying that the particle is
perfectly reflected at the barrier.

In the region x > 0, we write

α =
√

2m(V0 − E)/! > 0 (6.74)

so that the Schrödinger equation becomes

d2ψ

dx2
− α2ψ = 0 x > 0 (6.75)

which has the solution
ψ = Ce−αx + Deαx (6.76)

where C and D are also unknown constants.

The problem here is that the exp(αx) solution grows exponentially with x, and we do not
want wave functions that become infinite: it would essentially mean that the particle is
forever to be found at x = ∞, which does not make physical sense. So we must put D = 0.
Thus, if we put together our two solutions for x < 0 and x > 0, we have

ψ =Aeikx + Be−ikx x < 0
=Ce−αx x > 0. (6.77)

If we reintroduce the time dependent factor, we get

Ψ(x, t) = ψ(x)e−iωt = Ce−αxe−iωt (6.78)
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which is not a travelling wave at all. It is a stationary wave that simply diminishes in
amplitude for increasing x.

We still need to determine the constants A,B, and C. To do this we note that for
arbitrary choice of these coefficients, the wave function will be discontinuous at x = 0.
For reasons connected with the requirement that probability interpretation of the wave
function continue to make physical sense, we will require that the wave function and its
first derivative both be continuous6 at x = 0.

These conditions yield the two equations

C =A + B

−αC =ik(A−B) (6.79)

which can be solved to give

B =
ik + a

ik − a
A

C =
2ik

ik − α
A (6.80)

and hence

ψ(x) =Aeikx +
ik + a

ik − a
Ae−ikx x < 0

=
2ik

ik − α
Ae−αx x < 0. (6.81)

V0

V (x)

Incoming wave function Aeikx.

Reflected wave function Be−ikx.

0 x

!!'

(
()

Wave function Ce−αx

penetrating into forbid-
den region.

Figure 6.4: Potential barrier with wave function of particle of energy E < V0 incident from the
left (solid curve) and reflected wave function (dotted curve) of particle bouncing off barrier. In
the clasically ‘forbidden’ region of x > 0 there is a decaying wave function. Note that the complex
wave functions have been represented by their real parts.

Having obtained the mathematical solution, what we need to do is provide a physical
interpretation of the result.

6To properly justify these conditions requires introducing the notion of ‘probability flux’, that is the
rate of flow of probability carried by the wave function. The flux must be such that the point x = 0, where
the potential is discontinuous, does not act as a ‘source’ or ‘sink’ of probability. What this means, as is
shown later, is that we end up with |A| = |B|, i.e. the amplitude of the wave arriving at the barrier is
the same as the amplitude of the wave reflected at the barrier. If they were different, it would mean that
there is more probability flowing into the barrier than is flowing out (or vice versa) which does not make
physical sense.
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First we note that we cannot impose the normalization condition as the wave function
does not decrease to zero as x → −∞. But, in keeping with comments made above, we
can still learn something from this solution about the behaviour of the particle.

Secondly, we note that the incident and reflected waves have the same ‘intensity’

Incident intensity =|A|2

Reflected intensity =|A|2
∣∣∣ ik + α

ik − α

∣∣∣2 = |A|2 (6.82)

and hence they have the same amplitude. This suggests that the incident de Broglie
wave is totally reflected, i.e. that the particle merely travels towards the barrier where it
‘bounces off’, as would be expected classically. However, if we look at the wave function
for x > 0 we find that

|ψ(x)|2 ∝
∣∣∣ 2ik

ik − α

∣∣∣2e−2αx

=
4k2

α2 + k2
e−2αx (6.83)

which is an exponentially decreasing probability.

This last result tells us that there is a non-zero probability of finding the particle in the
region x > 0 where, classically, the particle has no chance of ever reaching. The distance
that the particle can penetrate into this ‘forbidden’ region is given roughly by 1/2α which,
for a subatomic particle can be a few nanometers, while for a macroscopic particle, this
distance is immeasurably small.

The way to interpret this result is along the following lines. If we imagine that a particle
is fired at the barrier, and we are waiting a short distance on the far side of the barrier
in the forbidden region with a ‘catcher’s mitt’ poised to grab the particle then we find
that either the particle hits the barrier and bounces off with the same energy as it arrived
with, but with the opposite momentum – it never lands in the mitt, or it lands in the
mitt and we catch it – it does not bounce off in the opposite direction. The chances of the
latter occurring are generally very tiny, but it occurs often enough in microscopic systems
that it is a phenomenon that is exploited, particularly in solid state devices. Typically
this is done, not with a single barrier, but with a barrier of finite width, in which case
the particle can penetrate through the barrier and reappear on the far side, in a process
known as quantum tunnelling.

6.3 Expectation Value of Momentum

We can make use of Schrödinger’s equation to obtain an alternative expression for the
expectation value of momentum given earlier in Eq. (5.13). This expression is

〈p〉 = m〈v(t)〉 = m

∫ +∞

−∞
x

[
∂Ψ∗(x, t)

∂t
Ψ(x, t) + Ψ∗(x, t)

∂Ψ(x, t)
∂t

]
dx. (6.84)

We note that the appearance of time derivatives in this expression. If we multiply both
sides by i! and make use of Schrödinger’s equation, we can substitute for these time
derivatives to give

i!〈p〉 =m

∫ +∞

−∞
x

[{ !2

2m

∂2Ψ∗(x, t)
∂x2

− V (x)Ψ∗(x, t)
}

Ψ(x, t) (6.85)

+ Ψ∗(x, t)
{
− !2

2m

∂2Ψ(x, t)
∂x2

+ V (x)Ψ(x, t)
}]

dx. (6.86)
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The terms involving the potential cancel. The common factor !2/2m can be moved outside
the integral, while both sides of the equation can be divided through by i!, yielding a
slightly less complicated experssion for 〈p〉:

〈p〉 = −1
2 i!

∫ +∞

−∞
x

[
∂2Ψ∗(x, t)

∂x2
Ψ(x, t)−Ψ∗(x, t)

∂2Ψ(x, t)
∂x2

]
dx. (6.87)

Integrating both terms in the integrand by parts then gives

〈p〉 =1
2 i!

∫ +∞

−∞

[
∂Ψ∗(x, t)

∂x

∂xΨ(x, t)
∂x

− ∂xΨ∗(x, t)
∂x

∂Ψ(x, t)
∂x

]
dx

+ 1
2 i!

[
∂Ψ∗(x, t)

∂x
Ψ(x, t)−Ψ∗(x, t)

∂Ψ(x, t)
∂x

]+∞

−∞
(6.88)

As the wave function vanishes for x → ±∞, the final term here will vanish. Carrying out
the derivatives in the integrand then gives

〈p〉 = 1
2 i!

∫ +∞

−∞

[
∂Ψ∗(x, t)

∂x
Ψ(x, t)−Ψ∗(x, t)

∂Ψ(x, t)
∂x

]
dx (6.89)

Integrating the first term only by parts once again then gives

〈p〉 = −i!
∫ +∞

−∞
Ψ∗(x, t)

∂Ψ(x, t)
∂x

dx + 1
2 i!Ψ∗(x, t)Ψ(x, t)

∣∣∣∣∣
+∞

−∞
. (6.90)

Once again, the last term here will vanish as the wave function itself vanishes for x → ±∞
and we are left with

〈p〉 = −i!
∫ +∞

−∞
Ψ∗(x, t)

∂Ψ(x, t)
∂x

dx. (6.91)

This is a particularly significant result as it shows that the expectation value of momentum
can be determined directly from the wave function – i.e. information on the momentum of
the particle is contained within the wave function, along with information on the position
of the particle. This calculation suggests making the identification

p → −i! ∂

∂x
(6.92)

which further suggests that we can make the replacement

pn →
(
− i! ∂

∂x

)n
(6.93)

so that, for instance

〈p2〉 = −!2
∫ +∞

−∞
Ψ∗(x, t)

∂2Ψ(x, t

∂x2
dx (6.94)

and hence the expectation value of the kinetic energy of the particle is

〈K〉 =
〈p2〉
2m

= − !2

2m

∫ +∞

−∞
Ψ∗(x, t)

∂2Ψ(x, t

∂x2
dx. (6.95)

We can check this idea by turning to the classical formula for the total energy of a particle

p2

2m
+ V (x) = E. (6.96)
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If we multiply this equation by Ψ(x, t) = ψ(x) exp(−iEt/!) and make the replacement
given in Eq. (6.94) we end up with

− !2

2m

d2ψ(x)
dx2

+ V (x)ψ(x) = Eψ(x) (6.97)

which is just the time independent Schrödinger equation. So there is some truth in the ad
hoc procedure outlined above.

This association of the physical quantity p with the derivative i.e. is an example of a
physical observable, in this case momentum, being represented by a differential operator.
This correspondence between physical observables and operators is to be found through-
out quantum mechanics. In the simplest case of position, the operator corresponding to
position x is itself just x, so there is no subtlties in this case, but as we have just seen this
simple state of affairs changes substantially for other observables. Thus, for instance, the
observable quantity K, the kinetic energy, is represented by the differential operator

K → K̂ = −!2 ∂2

∂x2
. (6.98)

while the operator associated with the position of the particle is x̂ with

x → x̂ = x. (6.99)

In this last case, the identification is trivial.
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