## GUJARAT TECHNOLOGICAL UNIVERSITY <br> B. E. - SEMESTER - IV • EXAMINATION - WINTER 2012

## Subject code: 140605

Date: 31/12/2012

## Subject Name: Advanced Strength of Materials Time: 02.30 pm - $\mathbf{0 5 . 0 0} \mathbf{~ p m}$ Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Derive expressions for finding out strain energy stored in a member due to
(i) Impact load (ii) Shear
(b) State Castigliano's first theorem and Maxwell's reciprocal theorem.
(c) A uniform metal bar of rectangular section $50 \mathrm{~mm} \times 25 \mathrm{~mm}$ is of length 1.5 m .07 Find the Strain energy stored in the bar when a load of 150 kN is gradually applied to it. If the elastic limit of the metal with which the bar is made is 160 $\mathrm{N} / \mathrm{mm}^{2}$, also find proof resilience and modulus of resilience.
Q. 2 (a) Stating assumptions derive Lame's equations to find out the stresses in a thick 07 cylindrical shell.
(b) A member having square cross section is subjected to axial pull of 15 kN and07 shear force of 10 kN . Design the cross section of member based on (i) The maximum principal stress theory (ii) The maximum shear stress theory. For a member elastic limit in axial tension is 250 MPa , Poisson's Ratio $=0.3$ and Factor of safety $=2.5$.

## OR

(b) A compound cylinder is made by shrinking a cylinder of external diameter 200 mm and in diameter 175 dige and internal diameter 125 mm . The radial pressure at junction after shrinkg is 8 MPa . Find the final stress set up across the section, when compout ercylinder is subjected to an internal fluid pressure of 80 MPa .
Q. 3 (a) Expla given failure theories (i) Maximum Principal strain theory (ii) 07
Maximum strain energy theory.
(b) A hollow cylinder has an external diameter of 300 mm and thickness of the wall is 50 mm . The cylinder is subjected to an internal fluid pressure $=40 \mathrm{MPa}$ and external pressure $=3.5 \mathrm{MPa}$. Calculate the maximum and minimum circumferential stresses and plot the variation of the same across the wall thickness.

## OR

Q. 3 (a) Find an expression for the bending moment in a circular ring which is subjected to a tensile load along the diameter.
(b) A curved beam, rectangular in cross-section is subjected to pure bending of07 400 Nm . The beam has width of 20 mm , depth of 40 mm and curved in a plane parallel to the depth. The mean radius of curvature is 50 mm . Find the position of neutral axis, maximum bending compressive stress and maximum bending tensile stress. Also plot the variation of the bending stress across the section.
Q. 4 (a) Derive the equation of shear stress, bending stress, deflection and angular 07
rotation for open helical spring.
(b) A flat spiral spring is 6 mm wide and 0.25 mm thick, the leangth is 2.5 m . $\mathbf{0 7}$
Assuming the maximum stress of 700 MPa to occur at the point of greatest
bending moment, determine (i) The torque (ii) The work stored in the spring
(iii) The number of turns to wind up spring. Take E=200 GPa.

OR
Q. 4 (a) A central horizontal section of a hook is a symmetrical trapezium 90 mm deep.07 The inner width being 100 mm and outer being 50 mm . the hook carries a load of 70 kN , the load line passes at a distance of 40 mm from the inside edge of the section. The centre of curvature is in the load line. Calculate the extreme intensities of stresses. Also plot the stress distribution across the section.
Q. 4 (b) A laminated steel spring simply supported at ends with span of 0.75 m is centrally loaded with a load of 8 kN . The central deflection under the above load is not to exceed 50 mm and the maximum stress is to be 415 MPa , determine; (i) width of plate (ii) thickness of plate (iii) number of plates (iv) the radius to which plates should be bent so that the spring become straight under the given 7.5 kN load. Assume width= 12 x thickness and $\mathrm{E}=200 \mathrm{GPa}$.
Q. 5 (a) Plot shear stress distribution diagram for any three standard sections.
(b) A simply supported timber beam of rectangular cross-section 120 mm wide and 200 mm deep. The span of beam is 5 m and permissible shear stress is 5MPa. Compute the allowable UDL on beam.
(c) A flat steel disc of uniform thickness and 1 m diameter rotates at 3600 r.p.m. Determine the intensities of principal stresses. Take density of material is $7.85 \times 10^{-5} \mathrm{~N} / \mathrm{mm}^{3}$ and Poisson's Ratio $=1 / 3$.
OR
Q. 5 (a) Derive expression of hoop stress in rotating ring (rim).
(b) A flywheel rim of 6 m mean diameter is rotated so that maximum hoop stress in the material is 8 MPa . If density of the material of fly wheel is $7000 \mathrm{~kg} / \mathrm{m}^{3}$, find the allowable speed neglecting arm effect.
(c) A thin channel section has outside flange and web dimensions of 100 mm and 200 mm respectively. The thickness of flanges and web is uniform and equal to 4 mm . Draw the shearstress and shear flow distribution for the section and find the position of the dear center. Take value of shear force at section $=60 \mathrm{kN}$.


