GUJARAT TECHNOLOGICAL UNIVERSITY
 BE SEM-IV Examination-Nov/Dec-2011

Subject code: 140605
Date: 02/12/2011

Subject Name: Advanced Strength of Materials

Time: $02.30 \mathrm{pm}-5.00 \mathrm{pm}$
Total marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Using Castigliano's first theorem, determine the deflection and rotation of the over hanging end A of the beam loaded as shown in Fig.-(1).
(b) A $600 \mathrm{~mm} \times 210 \mathrm{~mm}$ R.S.B. is freely supported at the ends over a span of 8 m . Construct the deflection influence line for the section at 2 m from the rigid end, given I for the section $=7.29 \times 10^{8} \mathrm{~mm}^{4}$ and $\mathrm{E}=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$. Three equal point loads of 80 kN each, spaced 2 m apart, between consecutive loads cross the beam form left to right. Calculate the defection at this section when the leading load is on it.
Q. 2 (a) Two similar round bars A and B are each 30 cm long as shown in Fig.(2). The bar A receives and axial blow, which produces a maximum stress of $2000 \mathrm{~kg} / \mathrm{cm}^{2}$. Find the maximum stress produced by the same blow on the bar B. If the bar B is also stressed to $2000 \mathrm{~kg} / \mathrm{cm}^{2}$, determine the ratio of energies stored b_{n} the bars B and A.
(b) A square pin is re(dured to resist a pull of 40 kN and shear force at 15 kN . Derive a suitable section according to strain energy theory. Maximum tensile stres is 350 MPa and Poisson's ration is 0.3 . Take a factor of safety oflou.
(b) A then spherical shell has 400 mm diameter and wall thickness t . It is subjected to internal pressure of 5 MPa . The material has yield strength of 265 MPa . Determine thickness of the shell as per distortion energy theory of failure. Take factor safety of 2.5 .
Q. 3 (a) A close coiled helical spring is to carry a load of 10 kg and the mean coil diameter is to be 8 times that of the wire diameter. Calculate these diameters, if the maximum stress is to be $1 \mathrm{t} / \mathrm{m}^{2}$.
(b) A vehicle weight 40 kN and running at 1.5 meter per second has to be brought to rest by a buffer spring. Find the number of spring of 20 coils each required t absorb the energy of motion during a compression of 250 mm . Each spring is made of 20 mm diameter rod forming a coil of 200 mm mean diameter. Take $\mathrm{G}=85 \mathrm{GPa}$.

OR

Q. 3 (a) A flat spring of rectangular section wire $10 \mathrm{~m} \times 0.5 \mathrm{~mm}$ has a length of 300 cm . If the maximum bending stress is limited to 600 MPa . Find : (a) maximum couple that can be exerted at the spindle, (b) maximum bending moment in the spring. (c) the number of turns required to wind up the spring. Take $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$.
(b) A cantilever type laminated spring (quaterelleptic) has a span of 0.5 m . If each leaf be 8 mm thick and 72 mm wide, Find the number of leaves so that the spring deflects 60 mm under an end load of 3 kN . Determine maximum bending stress at this load. Also determine the height form which this load may be allowed to fall so that maximum bending stress induced is $700 \mathrm{~N} / \mathrm{mm}^{2}$. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
Q. 4 (a) A cast iron pipe of 40 cm internal diameter and 10 cm thickness carries water under a pressure of $80 \mathrm{~kg} / \mathrm{cm}^{2}$. Determine the maximum and minimum intensities of hoop stress across the section. Also sketch the radial pressure distribution and hoop stress distribution across the section.
(b) Write comparison between thin shell and thick shell theory.
(b) The maximum stress permitted in a thick cylinder, radii 8 cm , is 12 cm , is $20 \mathrm{~N} / \mathrm{mm}^{2}$, the external pressure is $6 \mathrm{~N} / \mathrm{mm}^{2}$, what internal pressure can be applied? Plot curves showing the variation of hoop and radial stresses through the material.
Q. 5 (a) A crane hook carries a load of 10 kN , the centre line of load being at a horizontal distance of 40 mm form the inside edge of a horizontal section through the centre of curvature, the centre of curvature being is load line. The horizontal section is a trapezium whose parallel sides are 15 mm and 25 mm and height is 35 mm . Find the stresses deyeloped in the hook.
(b) Write comparison of bending of straight members and bending of curved members. .
Q. 5 (a) A beam of triangular cross section having base width of 100 mm and height of 150 mm subjected to a shear force of 150 kN . Find the value of maximum shar stress, and sketch the shear stress distribution along the depth of 9 am .
(b) A unifornt thickness flat disc of 800 mm in diameter is shrunk fitted on a
solid stel shaft of 160 mm diameter. The shrink fit pressure is 100 MPa .
Caldate: (i) Interference allowance, (ii) RPM at which disc will loosen
solid stel shaft of 160 mm diameter. The shrink fit pressure is 100 MPa .
Caldate: (i) Interference allowance, (ii) RPM at which disc will loosen on the shaft, (iii) Stress at the inner radius at half the speed at (ii). bers.

OR

