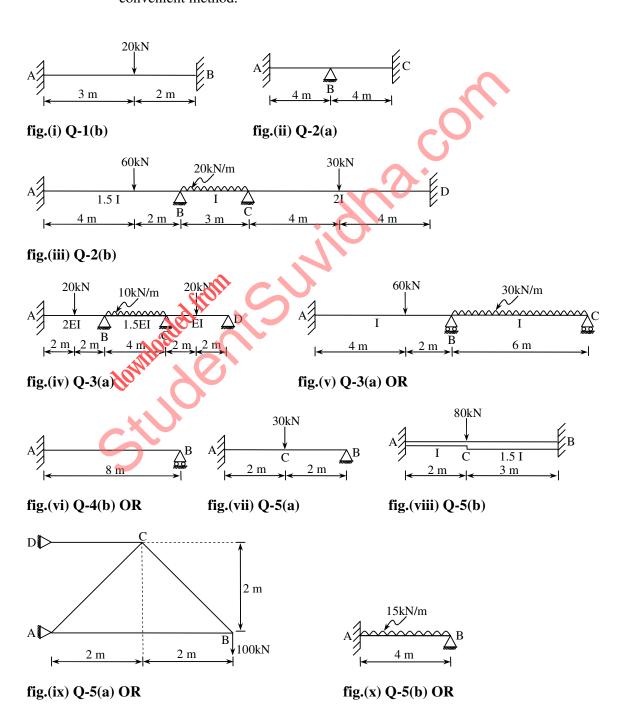
α ,	A 7	
Seat	/VO.:	

Enrol	ment No	
Enrol	lment No.	

GUJARAT TECHNOLOGICAL UNIVERSITY BE- IVth SEMESTER-EXAMINATION - MAY/JUNE- 2012


Subject code: 140603		Date: 29/05/2012		
•		ame: Structural Analysis-II		
Time: 10:30 am – 01:00 pm Total Ma				
Instr	uctio	ns:		
1.	Atten	npt all questions.		
2.	Make	e suitable assumptions wherever necessary.		
3.	Figur	res to the right indicate full marks.		
Q.1	(a)	(i) Explain carry over factor and distribution.	bution factor with 04	
		(ii) Write advantages of fixed beam over simpl	y supported beam. 03	
	(b)	Analyze the fixed beam shown in fig.(i) using more	nent area theorems. 07	
0.2	(-)	E ' ARC 1 ' C' ('')	C 1.1	
Q.2	(a)	For a continuous beam ABC as shown in fig.(ii), all supports, if support A rotates by 0.003 radian if and the support B sinks by 5mm. $E = 2 \times 10^5 \text{ N/m}$	clockwise direction	
	(b)	Analyze the continuous beam shown in fig. (iii) by		
	(0)	OR	Train 5 method.	
	(b)	(i) State and explain Castigliano's first theorem	n. 03	
		(ii) Explain methods of prestressing.	04	
Q.3	(a) Determine the support moment for a continuous beam as shown in		s beam as shown in 10	
		fig.(iv) by morrent distribution method. Also dra	aw bending moment	
		diagram.		
	(b)	Derive the equation of fixed end moment develop		
		intensity w applied on a fixed beam AB of length l	•	
0.2	(a)	OR	hy alone deflection 10	
Q.3	(a)	Analyze the continuous beam shown in fig.(v)		
	(b)	method. Draw shear force diagram and bending moment diagram. Derive the equation for fixed end moment developed if support B of a 04		
	(0)	fixed beam AB rotates by angle θ_B clockwise.	oca ii support B of a v4	
		the second of magnetic forms		
Q.4	(a)	(i) Differentiate prestressed concrete from rein	forced concrete. 03	
		(ii) Why higher grade concrete and high tensile	e strength steel wires 04	
		are used in prestressed concrete?		
	(b)	A prestressed concrete beam of section 400×600	mm is subjected to a 07	
		prestressing force of 2000kN at an eccentricity of 100 mm from bottom. It is subjected to a live load of 30 kN/m over a span of 12 m.		
		Calculate extreme fibre stresses at top and bot	•	
		transfer and after the application of live load. A		
		prestress to be 10%. Draw bending stress distribu	ition diagrams. Take	
		unit weight of concrete = 24 kN/m^3 .		
0.4	(-)	OR	antonoo in atmy-t1 04	
Q.4	(a)	What is an influence line diagram? Explain its impanalysis	portance in structural 04	
	(b)	analysis. Generate influence line diagram for R_B for a prop	oped cantilever beam 10	
	(D)	as shown in fig.(vi) by first principle. Also draw II	-	

- Q.5 (a) Using method of consistent deformation, analyze the beam shown in fig.(vii). Draw shear force and bending moment diagram.

 EI = constant.
 - (b) Calculate fixed end moments for a beam as shown in fig.(viii) using Castigliano's theorem. Draw shear force diagram and bending moment diagram.

OR

- Q.5 (a) Determine the vertical deflection of joint C of the truss shown in fig.(ix) by unit load method. The cross-sectional area of each member is 400 mm^2 . $E = 2 \times 10^5 \text{ N/mm}^2$.
 - (b) Draw bending moment diagram for the beam shown in fig.(x). Use any convenient method.

downlead from the Uniday Colff.
Still dente the Colff.