GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- 1st / 2nd • EXAMINATION – SUMMER • 2014

Sul Sul Tin Inst	oject oject ne: 02 ructio	Code: 110011 Date: 21-06-2014 Name: Physics 2:30 pm - 05:00 pm Dons: Total Marks: 70	
	1. 2 2. 4 3. 4	Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Each question carries equal marks.	
Q.1	(a)	 Answer the following questions. [One mark each] 1. Classify the sound based on frequency. 2. What is a primitive cell? 3. Define: Density of packing. 4. Define: Forbidden band. 5. What is called a conventional radiograph and Xero radiograph. 6. Define: Biomaterial. 7. What is a Kevlar? 	[07]
	(b)	Obtain expression for electrical conductivity in terms of k_BT .	[04]
	(c)	Calculate the critical current for a superconducting wire of lead having a diameter of 4.2K. Critical temperature for lead is 7.18K and $H_c(0)=6.5 \times 10^4 \text{A/m}$.	of 1mm at [03]
Q.2	(a)	 Define: Low-Temperature Superconductor, High-Temperature Superconductor, M [0] What is SQCID? Explain with diagram. 	Maglev)3] [04]
	(b)	Discuss the various factors affecting the acoustics of buildings and give their remed	lies.
	(c)	Calculate the electrical conductivity of copper. The atomic weight, density and relate are $63.5, 8.9 \times 10^3$ kg/m ³ and 2.48×10^{-14} s, respectively.	xation time [03]
Q.3	(a)	 Give brief account of temperature induced transformation. Discuss the types, properties and applications of metallic glasses. 	[03] [04]
	(b)	Describe the principle and the method of producing of ultrasonic waves by magneto method.	ostriction [04]
	(c)	An optical fiber has a numerical aperture of 0.20 and a cladding refractive ind Determine the acceptance angle for the fiber in water which has a refractive index 1	lex of 1.55. 1.33. [03]
Q.4	(a)	 What is NDT? Discuss the objectives of NDT. Explain Liquid Penetrant Method for NDT. 	[02] [05]
	(b)	Define: Atomic radius. Derive atomic radius for BCC and FCC structure.	[04]

1/2

Download all NOTES and PAPERS at StudentSuvidha.com

	(c)	A rectangular plane sheet of doped silicon has dimension of 1cm along Y-direction, an 0.5mm along Z-direction. Hall probes are attached on its two surfaces parallel to X-Z and a magnetic field of flux density $0.7Wb/m^2$ is applied along Z-direction. A current is flowing in it in X-direction. Calculate the Hall voltage measured by the probes if the coefficient of the material is 1.25×10^{-3} m ³ C ⁻¹ .	sheet of doped silicon has dimension of 1cm along Y-direction, and ection. Hall probes are attached on its two surfaces parallel to X-Z plane d of flux density $0.7Wb/m^2$ is applied along Z-direction. A current of 1mA <i>C</i> -direction. Calculate the Hall voltage measured by the probes if the Hall haterial is $1.25x10^{-3}$ m ³ C ⁻¹ . [03]		
Q.5	(a)	 Write short note on: Laser cutting Discuss the construction of Nd: YAG and CO₂ Laser with proper sketch. 	[03] [04]		
	(b)	Discuss the construction and working of (1) LED (2) Solar cell.	[04]		
	(c)	Calculate the atomic radius of Fe which has BCC structure. Given the density of iron 7.86gm/cm ³ and atomic weight 55.85.	[03]		
Q. 6	(a)	 What is threshold intensity? Give its value. What are ultrasonic waves? Explain the term Hall Effect. Derive the relation between Hall voltage and Hall coe [05] 	[01] [01] fficient.		
	(b)	1. Give the Differences between stimulated and spontaneous emission.	[02]		
		fine the terms: (1) Population Inversion (2) Lasing (3) Pumping (4) Metastable State			
			[02]		
0.7	(c)	An ultrasonic source of 0.09 MHz sends down a pulse towards the seabed which return 0.55 seconds. Assuming the velocity of sound in sea water is 1800 m/s; calculate the d sea and the wavelength of pulse.	ns after lepth of [03]		
Q. /	(a)	1. The Bragg adgle corresponding to the first order reflection from plane (111) in a case 30° when X-rays of wavelength 1.75A ^{\circ} are used. Calculate the interatomic spacing	g.		
			[03]		
		2. Discuss the properties of superconductors.	[04]		
	(b)	Derive the expression for Acceptance angle and Numerical aperture of an optical fiber	. [04]		
	(c) The sound from a drill gives a noise level 90 dB at a point short distance from it. noise level at this point if four such drills are working simultaneously at the same from it?				

Download all NOTES and PAPERS at StudentSuvidha.com