GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- 1st / 2nd • EXAMINATION – SUMMER • 2014

Subject Code: 110009 Date: 16-0		Code: 110009 Date: 16-06-2014	
Time: 02:30 pm - 05:30 pm		2:30 pm - 05:30 pm Total Marks: 70	
	1. 2. 3.	Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Find the inverse of A = $\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & 1 & 1 \end{bmatrix}$	07
	(b)	What conditions must $b_1, b_2, and b_3$ satisfy in order for the system of equations $x + y + z = b_1$, $x + z = b_2$, $2x + y + 3z = b_2$ to be consistent?	07
Q.2	(a)	Find the eigen values and one of the eigen vector of the matrix $A = \begin{bmatrix} 8 & 5 & 0 \\ 0 & 3 & 0 \end{bmatrix}$	07
	(b)	Find the basis for the null space of the matrix $A = \begin{bmatrix} 1 & 4 & 5 & 6 & 9 \\ 3 & -2 & 1 & 4 & -1 \\ -1 & 0 & -1 & -2 & -1 \\ 2 & 3 & 5 & 7 & 8 \end{bmatrix}$	07
Q.3	(a)	Use the inner product $(p,q) = \int_{-1}^{1} p(x)q(x)dx$. To compute $\langle p,q \rangle$ for the vectors $p = p(x)$ and $q = q(x)$ in P ₃ where 1. $p = 1 - x + x^2 + 5x^3$ $q = x$	07
	(b)	Find the orthonormal basis for the subspace spanned by $(1, 1, 1)$ $(1, 2, 2)$	07
Q.4	(a)	{ (1,1,1), (1,2,1), (1,2,3) }. Consider the basis S={ v_1, v_2, v_3 } for R ³ , where $v_1 = (1,1,1)$, $v_2 = (1,1,0)$ and $v_3 = (1,0,0)$. Let T: R ³ \rightarrow R ² be the linear transformation such that T(v_1) =(1,0) T(v_2) = (2,-1) and T(v_3) = (4,3). Find a formula for T(x, y, z) and compute T(2,1,3)	07
	(b)	Let T: $\mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by T(x, y) = (y, -5x + 13y, -7x + 16y). Find the matrix for the linear transformation T with respect bases B={ b ₁ =(3,1) b ₂ = (5,2)} for \mathbb{R}^2 and $\mathbb{R}^7 = \{y_1 = (1, 0, -1), y_2 = (-1, 2, 2), y_2 = (0, 1, 2)\}$	07
Q.5	(a)	Solve the following system of the equations x + 2y + z = 5 $3x$ $y + z = 6$ $y + y + 4z = 7$	07
	(b)	x + 2y + 2 = 3, $3x - y + 2 = 0$, $x + y + 42 = 7$. Define: symmetric and skew-symmetric matrix. Show that every square matrix	07
Q.6	(a)	can be expressed as sum of symmetric and skew-symmetric matrix. Consider the vectors $\mathbf{u} = (2,-1,1)$ and $\mathbf{v} = (1,1,2)$	04
	(b)	Find 1. $u + v = 2$. $u \cdot v = 3$. $\ u - v\ $ and determine the angle between u and v. Find the rank of the matrix $A = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & 0 & 1 \end{bmatrix}$	04

Download all NOTES and PAPERS at StudentSuvidha.com

1

(c) Let
$$A = \begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix}$$
. Compute A^3 , A^{-3} and $A^2 - 2A + I$. 06

- **Q.7** (a) Show that the vectors $v_1 = (1, 2, 3)$, $v_2 = (4, 5, 6)$ and $v_3 = (2, 1, 1)$ in R³ linearly 04 independent.
 - (b) Define: Basis for Vector Space. 04 Show that the set of vectors $S = \{ (1,2,1), (2,9,0), (3,3,4) \}$ is a basis for \mathbb{R}^3 . 06
 - Determine which of the following are subspace of R^3 (c)
 - 1. W = { $(x,y,0) / x, y \in \mathbb{R}$ }
 - 2. $U = \{(x, 1, 1) | x \in R\}.$

inmudent suithan con