GUJARAT TECHNOLOGICAL UNIVERSITY B. E. - SEMESTER – I • EXAMINATION – WINTER • 2014

Subject code: 110009 Date: 05-01-		code: 110009 Date: 05-01-2015	2015	
Tir	ne: 10 struct	0:30 am - 01:30 pm Total Marks: 70 ions:		
	1. 2. 3.	Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	Find the Rank of the matrix	05	
	(b)	Solve the following system of equations using Gauss Elimination method 3x + 3y + 2z = 1, $x + 2y = 410y + 3z = -2$, $2x - 3y - z = 5$	05	
	(c)	Find k, l and m so that $\begin{bmatrix} -1 & k & -i \\ 3-5i & 0 & m \\ l & 2+4i & 2 \end{bmatrix}$ is Hermitian.	04	
Q.2	(a)	Show that the set of all pairs of real numbers of the form $(1, x)$ with the operations defined as $(1, x) + (1, y) = (1, x + y)$ and $k(1, x) = (1, kx)$ is a vector energy	05	
	(b)	Express the vector (6, 11, 6) as a linear combination of $(2, 1, 4)$, $(1, -1, 3)$, $(3, 2, 5)$	05	
	(c)	Find the condition of a, b, c so that the vector $v = (a, b, c)$ is in the span of $\{v_1, v_2, v_3\}$ where $v_1 = (2, 1, 0), v_2 = (1, -1, 2), v_3 = (0, 3, -4)$	04	
Q.3	(a)	Check whether the set $\{2 + x + x^2, x + 2x^2, 4 + x\}$ of polynomials is linearly dependent or independent in P_2	05	
	(b)	Find a basis for the subspace of P_2 spanned by the vectors $1+x, x^2 - 2 + 2x^2, -3x$	05	
	(c)	Find a basis for the row and column subspaces of $\begin{bmatrix} 1 & 4 & 5 & 4 \\ 2 & 9 & 8 & 2 \\ 2 & 9 & 9 & 7 \\ -1 & -4 & -5 & -4 \end{bmatrix}$	04	
Q.4	(a)	Show that $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x, y, z) = (2x - y + z, y - 4z)$ is a	05	
	(b)	Consider the basis $S = \{v_1, v_2\}$ for R^2 where $v_1 = (-2, 1)$ and $v_2 = (1, 3)$. Let $T : R^2 \to R^3$ be the linear transformation such that $T(v_1) = (-1, 2, 0)$ and $T(v_2) = (0, -3, 5)$ then find the formula of $T(x, y)$	05	
	(c)	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by $T(x, y) = (2x - y, -8x + 4y)$ then find a basis for kernel of T and range of T	04	

1

Download all NOTES and PAPERS at StudentSuvidha.com

- Q.5 (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by 05 T(x, y, z) = (x + 2y + z, 2x - y, 2y + z) then find the matrix of T with respect to the basis {(1, 0, 1), (0, 1, 1), (0, 0, 1)}
 - (b) Let $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$ then check whether 05 $\langle u, v \rangle = u_1v_1 - u_2v_2 + u_3v_3$ defines an inner product on R^3
 - (c) For $p = a_0 + a_1 x + a_2 x^2$ and $q = b_0 + b_1 x + b_2 x^2$ let the inner product on P_2 04 be defined as $\langle p, q \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$. Let $p = 3 - x + x^2$ and $q = 2 + 5x^2$ then find ||p||, ||q|| and d(p,q)

Q.6 (a) For
$$A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$$
 and $B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$ let the inner product on M_{22} be defined **05**
as $\langle A, B \rangle = a_1a_2 + b_1b_2 + c_1c_2 + d_1d_2$. Let $A = \begin{bmatrix} 2 & 6 \\ 1 & -3 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}$
then verify Cauchy-Schwarz inequality and find the angle between A and B

- (b) Show that the set of vectors $v_1 = \left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right)$, $v_2 = \left(-\frac{1}{2}, \frac{1}{2}, 0\right)$ and $v_3 = \left(\frac{1}{3}, \frac{1}{3}, -\frac{2}{3}\right)$ is orthogonal in R^3 and then convert it into an orthonormal set
- (c) Find the algebraic and geometric multiplicity of each of the eigen value of $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ 04
 - $\begin{array}{ccc} 0 & 0 & 1 \\ 1 & -3 & 3 \end{array}$

Q.7 (a) Verify Cayley Bramilton theorem for $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and hence find A^{-1} 05

- (b) Find a non singular matrix which diagonalizes $\begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{bmatrix}$ 05
- (c) Find the maximum and minimum values of the quadratic form $x^2 + y^2 + 4xy$ 04 subject to the constraint $x^2 + y^2 = 1$ and also determine the values of x and y at which the maximum and minimum occur

Download all NOTES and PAPERS at StudentSuvidha.com