\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 B. E. - SEMESTER - I • EXAMINATION - WINTER • 2014

Subject code: 110009
Date: 05-01-2015
Subject Name: Mathematics - II
Time: 10:30 am - 01:30 pm
Total Marks: 70

Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Find the Rank of the matrix $\left[\begin{array}{cccc}0 & -1 & 2 & 3 \\ 2 & 3 & 4 & 5 \\ 1 & 3 & -1 & 2 \\ 3 & 2 & 4 & 1\end{array}\right]$

$$
\begin{aligned}
3 x+3 y+2 z & =1, & x+2 y=4 \\
10 y+3 z & =-2, & 2 x-3 y-z=5
\end{aligned}
$$

(c) Find k, l and m so that

$$
\left[\begin{array}{ccc}
-1 & k & -i \tag{04}\\
3-5 i & 0 & m \\
l & 2+4 i & 2
\end{array}\right] \quad \text { is Hermitian. }
$$

Q. 2 (a) Show that the set of all pairs of real numbers of the form $(1, x)$ with the operations defined as $(1, x)+(1, y)=(1, x+y)$ and $k(1, x)=(1, k x)$ is a vector space.
(b) Express the vector $(6,11,6)$ as a linear combination of $\mathbf{0 5}$ $(2,1,4),(1,-1,3),(\beta, 2,5)$
(c) Find the condition $10, b, c$ so that the vector $v=(a, b, c)$ is in the span 04 of $\left\{v_{1}, v_{2}, v_{3}\right\}$ where $v_{1}=(2,1,0), v_{2}=(1,-1,2), v_{3}=(0,3,-4)$
Q. 3 (a) Check whoner the set $\left\{2+x+x^{2}, x+2 x^{2}, 4+x\right\}$ of polynomials is linearly 05 depengrit or independent in P_{2}
(b) Find a basis for the subspace of P_{2} spanned by the vectors $1+x, x^{2},-2+2 x^{2},-3 x$
(c) Find à basis for the row and column subspaces of $\left[\begin{array}{cccc}1 & 4 & 5 & 4 \\ 2 & 9 & 8 & 2 \\ 2 & 9 & 9 & 7 \\ -1 & -4 & -5 & -4\end{array}\right]$
Q. 4 (a) Show that $T: R^{3} \rightarrow R^{2}$ defined by $T(x, y, z)=(2 x-y+z, y-4 z)$ is a linear transformation.
(b) Consider the basis $S=\left\{v_{1}, v_{2}\right\}$ for R^{2} where $v_{1}=(-2,1)$ and $v_{2}=(1,3)$.

Let $T: R^{2} \rightarrow R^{3}$ be the linear transformation such that $T\left(v_{1}\right)=(-1,2,0)$ and $T\left(v_{2}\right)=(0,-3,5)$ then find the formula of $T(x, y)$
(c) Let $T: R^{2} \rightarrow R^{2}$ be the linear transformation defined by $T(x, y)=(2 x-y,-8 x+4 y)$ then find a basis for kernel of T and range of T
Q. 5 (a) Let $T: R^{3} \rightarrow R^{3}$ be the linear transformation defined by $T(x, y, z)=(x+2 y+z, 2 x-y, 2 y+z)$ then find the matrix of T with respect to the basis $\{(1,0,1),(0,1,1),(0,0,1)\}$
(b) Let $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$ then check whether $<u, v\rangle=u_{1} v_{1}-u_{2} v_{2}+u_{3} v_{3}$ defines an inner product on R^{3}
(c) For $p=a_{0}+a_{1} x+a_{2} x^{2}$ and $q=b_{0}+b_{1} x+b_{2} x^{2}$ let the inner product on P_{2} be defined as $<p, q\rangle=a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}$. Let $p=3-x+x^{2}$ and $q=2+5 x^{2}$ then find $\|p\|,\|q\|$ and $d(p, q)$
Q. 6 (a) For $A=\left[\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right]$ and $B=\left[\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right]$ let the inner product on M_{22} be defined as $\langle A, B\rangle=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}+d_{1} d_{2}$. Let $A=\left[\begin{array}{cc}2 & 6 \\ 1 & -3\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 2 \\ 1 & 0\end{array}\right]$ then verify Cauchy-Schwarz inequality and find the angle between A and B
(b) Show that the set of vectors $v_{1}=\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right), v_{2}=\left(-\frac{1}{2}, \frac{1}{2}, 0\right)$ and $v_{3}=\left(\frac{1}{3}, \frac{1}{3},-\frac{2}{3}\right)$ is orthogonal in R^{3} and then convert it into an orthonormal set
(c) Find the algebraic and geometric multiplicity of each of the eigen value of

$$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -3 & 3
\end{array}\right]
$$

Q. 7 (a) Verify Cayley 1 iamilton theorem for $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and hence find A^{-1}
(b) Find a non singular matrix which diagonalizes $\left[\begin{array}{ccc}4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1\end{array}\right]$
(c) Find the maximum and minimum values of the quadratic form $x^{2}+y^{2}+4 x y$ subject to the constraint $x^{2}+y^{2}=1$ and also determine the values of x and y at which the maximum and minimum occur

