\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-1 $1^{\text {st }} / 2^{\text {nd }} \cdot$ EXAMINATION - SUMMER 2013

Subject Code: Maths-II
Date: 05-06-2013
Subject Name: 110009
Time: 02:30 pm - 05:30 pm
Total Marks: 70 Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a Let $u=(4,1,2,3)$ and $v=(0,3,8,-2)$. Evaluate following as directed.
4. Find the norm of $u+v$.
5. Find the Euclidean inner product of u and v.
6. Find the Euclidean distance between u and v.
7. Find $2 u-3 v$.
(b) Find the inverse of $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$.
(c) If $\mathrm{A}=\left[\begin{array}{ccc}2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3\end{array}\right]$, Prove that $\mathrm{A}^{2}-13 \mathrm{~A}+12=\mathbf{0}$.
Q. 2 07
(a) Define symmetric and skew symmetric matrix. Express $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$ as the sum of the symmetric and the skew symmetric matrix.
(b) Determine whether $\mathrm{W}=\left\{(\mathrm{a}, \mathrm{b}, \mathrm{c}) / \mathrm{a}^{2}+\mathrm{b}^{2}<1\right\}$ is a subspace of R^{3}.
(c) Show that the set of vectors $\{(2,1,1),(1,2,2),(1,1,1)\}$ is linearly independent in R^{3}.
Q. 3 (a)

Find the eigenya $A=\left[\begin{array}{ccc}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$.
(b) Find the leat square solution of the linear system $\mathrm{Ax}=\mathrm{b}$ given by
$x_{1}-x_{2}-4,3 x_{1}+2 x_{2}=1,-2 x_{1}+4 x_{2}=3$ and find the orthogonal projedion of b on the column space of A.
Q. 4 (a) De1, le linear transformation. Find which of the following function are linear 07 transformations.

1. $T: R^{3} \rightarrow R^{3}$, Defined by $T(x, y, z)=\left(x^{2}, y, x+y\right)$.
2. $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$, Defined by $\mathrm{T}(\mathrm{x}, \mathrm{y})=(\mathrm{x},-\mathrm{y})$.
(b) Let R^{3} have the Euclidean inner product. Use the Gram-Schidt process to transform the basis $S=\{(1,0,-1),(2,1,1),(0,-1,3)$ into an orthonormal basis.
Q. 5 (a) Let V be the set of all positive real number with the operations $x+y=x y$ and
$k x=x^{k}, k \in R$. Show that the set V is a vector space.
(b) Let $\mathrm{v}_{1}=(1,2,1), \mathrm{v}_{2}=(2,9,0)$ and $\mathrm{v}_{3}=(3,3,4)$
3. Show that the set $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for R^{3}.
4. Find the coordinate vector of $v=(5,-1,9)$ with respect to S.
Q. 6 (a) Solve $x+y+2 z=8,-x-2 y+3 z=1,3 x-7 y+4 z=10$ by Gauss-Jordan elimination.
(b) Find a basis for the null space, the row space and the column space
of $A=\left[\begin{array}{ccc}1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2\end{array}\right]$.
Q. 7 (a) Consider the basis $S=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ for R^{2}, where $\mathrm{v}_{1}=(-2,1)$ and $\mathrm{v}_{2}=(1,2)$ and Let $T: R^{2} \rightarrow R^{3}$ be the linear transformation such that $T\left(v_{1}\right)=(-1,2,0)$ and $\mathrm{T}\left(\mathrm{v}_{2}\right)=(0,-3,5)$.Find a formula for $\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ and use that formula to find $T\left(\mathrm{x}_{1}, \mathrm{X}_{2}\right)$.
(b) Define: Real inner product space. Let the vector space P_{2} have the inner product space $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$ then
5. Find $\|p\|$ for $p=1, q=x$.
6. Find $\mathrm{d}(p, q)$ if $p=x, q=x^{3}$.

