\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY B. E. - SEMESTER-I • EXAMINATION - WINTER 2012

Subject code: 110009

Date: 11-01-2013

Subject Name: Mathematics - II

Time: $10.30 \mathrm{am} \mathbf{- 0 1 . 3 0} \mathrm{pm}$
Total Marks: 70

Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q. 1 (a) Define dot product of vectors as matrix multiplication. State and prove

 Cauchy- Schwarz Inequality. Verify it for vectors $u=(1,2,3) \& v=(-1,0,3)$(b) Define Vector Space over the field K. Check whether the structure ($R^{2},+$, $\left.y_{1}, x_{2}+y_{2}\right) \&$ Scalar Multiplication $\alpha \cdot \bar{x}=\left(\alpha^{2} x_{1}, \alpha^{2} x_{2}\right)$ for vectors $\bar{x}=\left(x_{1}, x_{2}\right) \& \bar{y}=\left(y_{1}, y_{2}\right)$
(c) Define Distance between two vectors. Find $d(u \times v) \hat{v})$ for vectors $=(1,2,-1) \& v=(-2,1,2)$, where \hat{v} is unit vector in the direction of vector v.
Q. 2 (a) Define Linear combination of vectors, Linearly Dependent vectors and Linearly Independent vectors. Check whether vectors $1, \sin ^{2} x \& \cos 2 x$ of $F(-\infty, \infty)$ are Linearly Dependent or Linearly Independent vectors.
(b) Define Basis of Yfictor Space. Find the standard basis vector(s) that can be added to the fof $\left\{v_{1}=(-1 \times 2), v_{2} \leq(1,-2,-2)\right\}$.
(c) Define Se Space of a vector space. State the necessary and sufficient condit on for a subset of a vector space to be subspace. Check whether sub seto $=\left\{A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right.$: where $a, b c d \in Z$ with $\left.|A|=0\right\}$ of a vector space M_{22} is sub space.
Q. 3 (a) Define the rank of a matrix. Find the rank of the following by reducing to row echelon form. $\mathrm{A}=\left(\begin{array}{cccc}5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0\end{array}\right)$
(b) Find the basis for row and column spaces of matrix
(c) What is trivial solution of homogeneous system of equations?

Solve the homogeneous system of linear equations :

$$
\begin{aligned}
& \quad 2 x_{1}+2 x_{2}-x_{3}+x_{5}=0,-x_{1}-x_{2}+2 x_{3}-3 x_{4}+x_{5}=0, \\
& x_{1}+x_{2}-2 x_{3}-x_{5}=0 \& x_{3}+x_{4}+x_{5}=0
\end{aligned}
$$

Q. 4 (a) Define Linear Transformation.Consider the basis
$S=\left\{v_{1}, v_{2}, v_{3}\right\}$ for R^{3}. Where $v_{1}=(1,1,1), v_{2}=(1,1,0) \& v_{3}=$ $(1,0,0)$. A Linear Transformation $T: R^{3} \rightarrow R^{2}$ such that $T\left(v_{1}\right)=$ $(1,0), T\left(v_{2}\right)=(2,-1) \& T\left(v_{3}\right)=(4,3)$, then find the formula for

Linear Transformation T.
(b) A Linear Transformation $T: R^{2} \rightarrow R^{3}$ defined by $T\left(x_{1}, x_{2}\right)=$
$\left(x_{2},-5 x_{1}+13 x_{2},-7 x_{1}+16 x_{2}\right)$. Find the matrix of Transformation T with respect to the bases $B=\left\{u_{1}=(3,1)\right.$,
$\left.u_{2}=(5,2)\right\}$ for $R^{2} \& B^{\prime}=\left\{v_{1}=(1,0,-1), v_{2}=(-1,2,2), v_{3}=\right.$ $(0,1,2)\}$ for R^{3}.
(c) Find the standard matrix for the Linear operator on R^{3} that
(1) its reflection through the ' $x z$ - plane ' (2) rotate each vector 90° counterclockwise about z-axis (along the positive z-axis toward the origin).Check your answer geometrically by sketching the vector (1,1,1) and T (1,1,1).
Q. 5 (a) Define inner product space. Find the matrix generated the inner product
$\langle u, v\rangle=3 u_{1} v_{1}+5 u_{2} v_{2}$
(b) Use Gram-Schmidt Process to transform the basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ of R^{3} (with usual inner product space) into orthonormal bases. Where $u_{1}=$ $(1,1,1), u_{2}=(0,1,1), \& u_{3}=(0,0,1)$.
(c) Find the least square solution of the linear system $A X=B$ given by $x_{1}-x_{2}=4,3 x_{1}+2 x_{2}=1 \&-2 x_{1}+4 x_{2}=3$.
Q. 6 (a) Define Hermitian Matrix and Unitary Matrix. Check whether the given
matrix is hermitian matrix or unitary matrix $\left[\begin{array}{cc}\frac{1+i}{2} & \frac{-1+i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2}\end{array}\right]$.
(b) Find Algebraic Multiplicity \& Geometric Multiplicity for the Matrix
$A=\left[\begin{array}{ccc}4 & 6 & 6 \\ -8 & -10 & -8 \\ 4 & 4 & 2\end{array}\right]$.
(c) Verify Dimension (Rank - Nullity) theorem for a linear Transformation T multiplication ${ }^{\circ}$ a matrix A given by
$A=\left[\begin{array}{ccc}1 & 5 \\ 3 & 5 & 13 \\ 2 & -1 & -4\end{array}\right]$
Q. 7 (a)

Find an orthogonal matrix P which diagonalizes the matrix
$A=\left[\begin{array}{ll}1 & 4 \\ 4 & 1\end{array}\right]$.
(b) Reduced the quadratic form into canonical form for
$2 x_{1}^{2}+5 x_{2}^{2}+5 x_{3}^{2}+4 x_{1} x_{2}-4 x_{1} x_{3}-8 x_{3} x_{2}$.
(c) What is Consistent solution of non -homogeneous system of equations?

Solve the system of linear equations by Gaussian Elimination :

