Seat No.: _____

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY B. E. - SEMESTER –I • EXAMINATION – WINTER 2012

Subject code: 110009 Date: 11-01- Subject Name: Mathematics - II			013	
Time: 10.30 am – 01.30 pm Total Marks: Instructions:				
	2. M	ttempt any five questions. lake suitable assumptions wherever necessary. igures to the right indicate full marks.		
Q.1	(a)	Define dot product of vectors as matrix multiplication. State and prove Cauchy- Schwarz Inequality. Verify it for vectors u = (1,2,3) & v = (-1,0,3)	5	
	(b)	Define Vector Space over the field K. Check whether the structure $(R^2, +, \cdot)$ is Vector Space over the field R. Where vector addition $\bar{x} + \bar{y} = (x_1 + y_1, x_2 + y_2)$ & Scalar Multiplication $\alpha \cdot \bar{x} = (\alpha^2 x_1, \alpha^2 x_2)$ for vectors $\bar{x} = (x_1, x_2)$ $\bar{y} = (y_1, y_2)$	5	
	(c)	Define Distance between two vectors. Find $d(u \times v)$, \hat{v} for vectors $= (1,2,-1)$ & $v = (-2,1,2)$, where \hat{v} is unit vector in the direction of vector v.	4	
Q.2	(a)	Define Linear combination of vectors, Linearly Dependent vectors and Linearly Independent vectors. Check whether vectors 1, $sin^2x \& \cos 2x$ of $F(-\infty, \infty)$ are Linearly Dependent or Linearly Independent vectors.	5	
	(b)	Define Basis of Vector Space. Find the standard basis vector(s) that can be added to the following set of vectors to produce a basis for R ³ . Set of vectors $\{v_1 = (-1, 23), v_2 \neq (1, -2, -2)\}$.	5	
	(c)	Define Sub-Space of a vector space. State the necessary and sufficient condition for a subset of a vector space to be subspace. Check whether sub set $W = \{A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$: where $a, b c d \in Z$ with $ A = 0\}$ of a vector space M_{22} is sub-space.	4	
Q.3	(a)	Define the rank of a matrix. Find the rank of the following by reducing to row echelon form. A = $\begin{pmatrix} 5 & 3 & 14 & 4 \\ 0 & 1 & 2 & 1 \\ 1 & -1 & 2 & 0 \end{pmatrix}$	5	
	(b)	Find the basis for row and column spaces of matrix $A = \begin{bmatrix} 1 & 4 & 5 & 4 \\ 2 & 9 & 8 & 2 \\ 2 & 9 & 9 & 7 \\ -1 & -4 & -5 & -4 \end{bmatrix}$	5	
	(c)	What is trivial solution of homogeneous system of equations? Solve the homogeneous system of linear equations : $2x_1 + 2x_2 - x_3 + x_5 = 0, -x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0,$ $x_1 + x_2 - 2x_3 - x_5 = 0 \& x_3 + x_4 + x_5 = 0$	4	
Q.4	(a)	Define Linear Transformation.Consider the basis $S = \{v_1, v_2, v_3\}$ for R ³ . Where $v_1 = (1, 1, 1), v_2 = (1, 1, 0) \& v_3 = (1, 0, 0)$. A Linear Transformation $T : R^3 \rightarrow R^2$ such that $T(v_1) = (1, 0), T(v_2) = (2, -1) \& T(v_3) = (4, 3)$, then find the formula for	5	

Download all NOTES and PAPERS at StudentSuvidha.com

Linear Transformation T.

A Linear Transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x_1, x_2) =$ (b) $(x_2, -5x_1 + 13x_2, -7x_1 + 16x_2)$. Find the matrix of Transformation T with respect to the bases $B = \{ u_1 = (3, 1), \dots \}$ $u_2 = (5,2)$ for $\mathbb{R}^2 \& B' = \{v_1 = (1,0,-1), v_2 = (-1,2,2), v_3 =$ (0, 1, 2) for \mathbb{R}^3 .

5

4

4

5

5

4

5

5

4

- (c) Find the standard matrix for the Linear operator on R³ that (1) its reflection through the 'xz – plane' (2) rotate each vector 90° counterclockwise about z - axis (along the positive z - axis toward the origin) .Check your answer geometrically by sketching the vector (1,1,1) and T(1,1,1).
- **Q.5** (a) Define inner product space. Find the matrix generated the inner product 5 $\langle u, v \rangle = 3u_1v_1 + 5 u_2 v_2$
 - (b) Use Gram- Schmidt Process to transform the basis $\{u_1, u_2, u_3\}$ of R³ (with 5 usual inner product space) into orthonormal bases. Where $u_1 =$ $(1,1,1), u_2 = (0,1,1), \& u_3 = (0,0,1).$
 - Find the least square solution of the linear system AX = B given by (c) $x_1 - x_2 = 4$, $3x_1 + 2x_2 = 1 \& -2x_1 + 4x_2 = 3$.

Q.6 Define Hermitian Matrix and Unitary Matrix. Check whether the given (a) matrix is hermitian matrix or unitary matrix

- Find Algebraic Multiplicity & Geometric Multiplicity for the Matrix (b) 6 $A = \begin{vmatrix} -8 & -10 \end{vmatrix}$
- 2 (c) Verify Dimension (Rank - Nullity) theorem for a linear Transformation T multiplication by a matrix A given by

(a)

Find an orthogonal matrix P which diagonalizes the matrix

$$A = \begin{bmatrix} 1 & 4 \\ 4 & 1 \end{bmatrix}$$

- (b) Reduced the quadratic form into canonical form for $2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_3x_2.$
- What is Consistent solution of non -homogeneous system of equations? (c) Solve the system of linear equations by Gaussian Elimination : x + y + 2z = 9, 2x + 4y - 3z = 1 & 3x + 6y - 5z = 0.

Q.7