\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-II [All Branch] examination June 2009

Subject code: 110009
Subject Name: Maths - II
Time: 10:30am-1:30pm
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1

ATTEMPT THE FOLLOWING:

(a) Define rank of the matrix. Find the rank of the matrix

$$
A=\left[\begin{array}{cccc}
1 & 2 & 4 & 0 \\
-3 & 1 & 5 & 2 \\
-2 & 3 & 9 & 2
\end{array}\right]
$$

(b) Let R^{3} have the Euclidean inner product. Use the Gram-Schmidt process to transform the basis vectors $u_{1}=(1,1,1), u_{2}=(-1,1,0)$ and $u_{3}=(1,2,1)$ into an orthonormal basis $\left\{v_{1}, v_{2}, v_{3}\right\}$.
(c) Find the eigenvalues and bases for the eigenspaces of A^{25} and $A+2 I$, where
$A=\left[\begin{array}{cc}3 & 0 \\ 8 & -1\end{array}\right]$
(d) i. Show that the functions $f(x)=x$ and $g(x)=\sin x$ form a linearly independenaset of vectors in $\mathrm{C}^{1}(-\infty, \infty)$.
ii. Shovinat if $0<\theta<\pi$, then $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ has no real
0). Define singular matrix. Find the inverse of the matrix A if it is invertible

Q. 2

(a) Determine the dimension and basis for the solution space of the
(b) Justify your answer. Why the following sets are not vector space under the given operations?
i. The set of all pairs of real numbers (x, y) with the operation $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$ and $\alpha(x, y)=(2 \alpha x, 2 \alpha y)$.
ii. In R^{3}, the operations defined as under $\left(x_{1}, y_{1}, z_{1}\right)+\left(x_{2}, y_{2}, z_{2}\right)=\left(z_{1}+z_{2}, y_{1}+y_{2}, x_{1}+x_{2}\right)$
(c) Let λ be an eigenvalue of a matrix A.

Then prove that (i) $\lambda+k$ is an eigenvalue of $A+k I$ (ii) $k \lambda$ is an eigenvalue of $k A$.
(d) i. Solve the following system by Gauss-Elimination method

$$
2 x+2 y+2 z=0,-2 x+5 y+2 z=1,8 x+y+4 z=-1
$$

ii. By using Gauss-Jordan elimination, Find the inverse of the given

$$
A=\left[\begin{array}{ccc}
\frac{1}{5} & \frac{1}{5} & \frac{-2}{5} \\
\frac{1}{5} & \frac{1}{5} & \frac{1}{10} \\
\frac{1}{5} & \frac{-4}{5} & \frac{1}{10}
\end{array}\right]
$$

OR

(d) I For which values of K and λ the following system have (i) no solution
(ii) unique solution (iii) an infinite no. of solutions

$$
x+y+z=6, x+2 y+3 z=10, x+2 y+K z=\lambda
$$

II Find basis for the row and column spaces of $A=\left[\begin{array}{cccc}1 & 4 & 5 & 4 \\ 2 & 9 & 8 & 2 \\ 2 & 9 & 9 & 7 \\ -1 & -4 & -5 & -4\end{array}\right]$.

Q. 3

(a) Prove that $\left(M_{n}(R),+, \bullet\right)$ is a vector space over \mathbf{R}.
(b) Determine whether the following spans the vector space \mathbf{R}^{3};
(i) $v_{1}=(2,-1,3), v_{2}=(4,1,2)$ and $v_{3}=(8,-1,8)$
(ii) $v_{1}=(2,2,2), v_{2}=(0,0,3)$ and $v_{3}=(0,1,1)$.
(c) Let M_{22} have the inner product $\langle A, B\rangle=\operatorname{tr}\left(A^{T} B\right)$. Find the cosine of the angle between A and B, where $A=\left[\begin{array}{cc}2 & 6 \\ 1 & -3\end{array}\right], B=\left[\begin{array}{ll}3 & 2 \\ 1 & 0\end{array}\right]$
(d) Show that $v=\{(x, y) / x=3 y\}$ is a subspace of R^{2}. State all possible subspaces of R^{2}.
(e)

Find the ond and and $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0\end{array}\right]$

OR

Q. 3 (a) $\mathcal{L e t}^{2} V=\{(x, y) \mid x, y \in \mathbf{R}, y>0\}$. Let $(a, b),(c, d) \in V$ and $\alpha \in \mathbf{R}$. Define $(a, b)+(c, d)=(a+c, b \cdot d)$ and $\alpha \cdot(a, b)=\left(\alpha a, b^{\alpha}\right)$.
(b) Define basis of a vector space. Let $v_{1}=(1,0,0), v_{2}=(2,2,0)$ and $v_{3}=(3,3,3)$. Show that the set $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for \mathbf{R}^{3}.
(c) Define inner product space. Let $u=\left\langle u_{1}, u_{2}\right\rangle, v=\left\langle v_{1}, v_{2}\right\rangle \in \mathbf{R}^{2}$. Define $\langle u, v\rangle=4 u_{1} v_{1}+u_{2} v_{1}+4 u_{1} v_{2}+4 u_{2} v_{2}$. Prove that $\left(\mathbf{R}^{2},\langle\cdot, \cdot\rangle\right)$ is an inner product space.
(d) Let V be a vector space. For a nonempty set A, prove that $A \subset \operatorname{span}(A)$.
Q. 4 (a) Check whether the following transformations are linear or not?
(i) $T: V \rightarrow \mathbf{R}$, where V is an inner product space, and $T(u)=\|u\|$.
(ii) $T: M_{m n} \rightarrow M_{n m}$, where $T(A)=A^{T}$.
(b)

Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, defined by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-2 x_{2} \\ -x_{2}\end{array}\right]$ and let $B=\left\{e_{1}, e_{2}\right\}$ and $B^{\prime}=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{c}-3 \\ 4\end{array}\right]\right\}$. Then using $[T]_{B^{\prime}}=P^{-1}[T]_{B} P$, find $[T]_{B^{\prime}}$, where P is the transition matrix from B to B.
(c) Consider the basis $S=\left\{v_{1}, v_{2}\right\}$ of R^{2}, where $v_{1}=(-2,1)$ and $v_{2}=(1,3)$ and let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ be the linear transformation such that $T\left(v_{1}\right)=(-1,2,0)$ and $T\left(v_{2}\right)=(0,-3,5)$. Find a formula for $T\left(x_{1}, x_{2}\right)$, and use that to find $T(2,-3)$.
(d) Define kernel of T. Let $T: \mathbf{R}^{3} \rightarrow P_{1}$ be a linear transformation defined $\operatorname{by} T\left(a_{1}, a_{2}, a_{3}\right)=\left(-a_{1}+2 a_{2}+a_{3}\right)+\left(-a_{2}+a_{3}\right) x$. Find which of the following vectors are in $\operatorname{ker}(T) ;(i) u=(6,2,2),(i i) u=(2,-1,1)$ and (iii) $u=(0,0,0)$.
(e) If u and v are orthogonal unit vectors, then what is the distance between u and v ? Justify your answer.
(f) Define: Algebraic multiplicity of an eigenvalue. Determine the algebraic and geometric multiplicity of $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ if the eigenvalues of A are $\lambda=2,-1,-1$ and corresponding eigenvectors for $\lambda=2$ is
and for $\lambda=-1$ are $\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$;

OR

Q. 4 (a) State Cagehy-Schwarz inequality. Verify Cauchy-Schwarz inequality for the vectg $u=(-3,1,0), v=(2,-1,3)$.
(b) Nove that $<u, v,>=\frac{1}{4}\|u+v\|^{2}-\frac{1}{4}\|u-v\|^{2}$
(c) Let $T: R^{4} \rightarrow R^{3}$ be the linear transformation given by the formula
$T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(4 x_{1}+x_{2}-2 x_{3}-3 x_{4}, 2 x_{1}+x_{2}+x_{3}-4 x_{4}, 6 x_{1}-9 x_{3}+9 x_{4}\right)$. Find abasis and dimension of $\operatorname{ker}(T), \operatorname{rank}(T)$ and verify the dimension theorem.
(d) Find the projection of $u=(1,-2,3)$ along $v=(1,2,1)$ in \mathbf{R}^{3}.
(e) Let $S, T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the linear transformations given by the formulas $T(x, y)=(x+y, x-y)$ and $S(x, y)=(2 x+y, x-2 y)$. (i) Show that S and T are one to one, (ii) Find formula for $T^{-1}(x, y), S^{-1}(x, y)$ and $(S \circ T)^{-1}(x, y)$,
(iii) Verify that $(S \circ T)^{-1}=T^{-1} \circ S^{-1}$.
Q. 5 (a)

Find a matrix P that diagonalizes $A=\left[\begin{array}{ccc}-1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3\end{array}\right]$, and determine $P^{-1} A P$.
(b)

By using Cayley-Hamilton theorem, if $\mathrm{A}=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$, then prove that
$A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I=\left[\begin{array}{lll}8 & 5 & 5 \\ 0 & 3 & 0 \\ 5 & 5 & 8\end{array}\right]$
(c) Find a change of variables that reduces the quadratic form $2 x_{1}^{2}+2 x_{2}^{2}-2 x_{1} x_{2}$ to a sum of squares and express the quadratic form in terms of the new variables.

OR

Q. 5 (a)

Find an orthogonal matrix P that diagonalizes $A=\left[\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right]$.
(b) Find the least squares solution of the linear system $A x=b$ given by $x_{1}+x_{2}=7,-x_{1}+x_{2}=0,-x_{1}+2 x_{2}=-7$ and find the orthogonal projection of b on the column space of A.
(c) Describe the conic whose equation is $5 x^{2}-4 x y+8 y^{2}-36=0$.

