Seat No.: _____

Date: 19-06-2014

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- 1st / 2nd • EXAMINATION - SUMMER • 2014

Subject Code: 110008 Subject Name: Mathematics - I

Time: 02:30 pm - 05:30 pm

Instructions:

Total Marks: 70 1. Attempt any five questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. Given that $1 - \frac{x^2}{4} \le u(x) \le 1 + \frac{x^2}{2}$, $x \ne 0$ find $\lim_{x \to 0} u(x)$ (i) Q. 1. (a) [2] Use Lagrange's Mean Value theorem to prove that (ii) [4] $\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2}$, 0 < a < b(b) Expand $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x^2}\right)$ in powers of x, using Maclaurin's Series. [4] Express cos(a + h) as a series in powers of h and hence evaluate $cos 44^{\circ}$. (c) [4] Find the equation of the tangent plane and normal line to the surface $x^3 + 2xy^2 - 7z^2 + 3y + 1 = 0$ at (1, 1, 1). Q. 2. (a) (i) [2] Discuss the continuity of the function $f(x, y) = \frac{xy}{x^2 + y^2}$; $(x, y) \neq (0, 0)$ (ii) [4] = 0; (*x*, *y*) = (0, 0)State Euler's theorem on homogeneous function. If $u = \sin^{-1}\left(\frac{x+y}{\sqrt{x+\sqrt{y}}}\right)$, prove that [4] (b) (i) $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\tan u$ (ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = -\frac{\sin u \cos 2u}{4\cos^3 u}$ If $x = r \cos \theta$ and $y = r \sin \theta$ by finding J and J' separately, show that JJ' = 1. [4] (c)

(i)
$$\sum \frac{2+3\cos n}{n^3}$$
 (ii) $\sum ne^{-n^2}$ (iii) $\sum \frac{(-1)^{n-1}}{n\sqrt{n}}$

Download all NOTES and PAPERS at StudentSuvidha.com

	(b)	Find the area outside the circle $r = 2a \cos \theta$ and inside the cardioid $r = a (1 + \cos \theta)$.	[4]
	(c)	Find the surface area of the solid generated by revolving the cycloid $x = a(\theta - \sin\theta), y = a(1 - \cos\theta)$ about its base.	[4]
Q. 4.	(a)	(i) Evaluate $\lim_{x \to a} \frac{\log(e^x - e^a)}{\log(x - a)}$	[2]
		(ii) Evaluate $\iint_{A} y dx dy$ where A is the region bounded by the parabolas	[4]
		$y^2 = 4x$ and $x^2 = 4y$	
	(b)	Evaluate $\int_{0}^{3} \int_{1}^{\sqrt{4-y}} (x+y) dx dy$ by changing the order of integration.	[4]
	(c)	Evaluate $\int_{0}^{1} \int_{0}^{1} dx dy$ by changing to polar co-ordinates.	[4]
Q. 5.	(a)	 (i) For f(x) = x², x ∈ [1, 5], find U(f, P) and L(f, P) for P = {1, 2, 3, 4, 5} (ii) Find the area common to the circles r = a and r = 2acosθ using double integration. 	[2] [4]
	(b)	Find the volume bounded by the cylinder $x^2 + z^2 = 1$, $y = 0$ and $y + z = 3$ using triple integration.	[4]
	(c)	Evaluate $\iiint z(x^2 + y^2) dv$ over the volume of the cylinder $x^2 + y^2 = 1$ intercepted	[4]
		by the planes $z = 2$ and $z = 3$.	[0]
Q. 6.	(a)	(i) If $\overline{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2z)k$, then show that \overline{F} is a solution of the soluti	[2]
		(ii) Find the directional derivative of e^{2x-y+z} at the point $(1, 1, -1)$ in a direction towards the point $(-3, 5, 6)$	[4]
	(b)	Show that $\overline{F} = y^2 z^3 i + 2xyz^3 j + 3xy^2 z^2 k$ is a conservative vector field and find the corresponding potential function.	[4]
	(c)	Verify that $\nabla \times (\nabla \times \overline{F}) = \nabla (\nabla \cdot \overline{F}) - \nabla^2 \overline{F}$ of the vector field, $\overline{F} = 3xz^2 - yzj + (x + 2z)k$	[4]
Q. 7.	(a)	(i) Check the convergence of the integral $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$	[2]
		(ii) Verify Green's theorem for $\oint_C (3x - 8y^2)dx + (4y - 6xy)dy$, where C is	[4]
		the boundary of triangle with vertices $(0, 0)$, $(1, 0)$ and $(0, 1)$.	
	(b)	Verify Stokes theorem for $\overline{F} = (2x - y)i - yz^2j - y^2zk$, where S is the upper half of the orthogonal $x^2 + z^2 + z^2 = 1$ and C is its houndary.	[4]
	(c)	the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary. Find the extreme value of $x^2 + y^2 + z^2$ under the constraint $ax + by + cz = C$	[4]
			r.1

Download all NOTES and PAPERS at StudentSuvidha.com