\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE - SEMESTER-1 $\mathbf{1}^{\text {st }} / \mathbf{2}^{\text {nd }} \cdot$ EXAMINATION - SUMMER • 2014

Subject Code: 110008
Date: 19-06-2014
Subject Name: Mathematics - I
Time: 02:30 pm - 05:30 pm
Total Marks: 70
Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1. (a) (i) Given that $1-\frac{x^{2}}{4} \leq \mathrm{u}(x) \leq 1+\frac{x^{2}}{2}, x \neq 0$ find $\lim _{x \rightarrow 0} \mathrm{u}(x)$
(ii) Use Lagrange's Mean Value theorem to prove that

$$
\begin{equation*}
\frac{\mathrm{b}-\mathrm{a}}{1+\mathrm{b}^{2}}<\tan ^{-1} \mathrm{~b}-\tan ^{-1} \mathrm{a}<\frac{\mathrm{b}-\mathrm{a}}{1+\mathrm{a}^{2}}, \quad 0<\mathrm{a}<\mathrm{b} \tag{4}
\end{equation*}
$$

(b) Expand $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}-1}{x^{2}}\right)$ in powers of x, using Maclaurin's Series.
(c) Express cos $\left(\mathrm{a}+\mathrm{h}\right.$) a a sertes in powers of h and hence evaluate $\cos 44^{\circ}$.
Q. 2. (a) (i) Find thequation of the tangent plane and normal line to the surface

$$
\begin{equation*}
x^{3} y^{2} x y^{2}-7 z^{2}+3 y+1=0 \text { at }(1,1,1) \tag{4}
\end{equation*}
$$

(ii) Discuss the continuity of the function $\mathrm{f}(x, y)=\frac{x y}{x^{2}+y^{2}} ;(x, y) \neq(0,0)$
(b) State Euler's theorem on homogeneous function. If $\mathrm{u}=\sin ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, prove that
(i) $x \frac{\partial \mathrm{u}}{\partial x}+y \frac{\partial \mathrm{u}}{\partial y}=\frac{1}{2} \tan \mathrm{u}$
(ii) $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=-\frac{\sin u \cos 2 u}{4 \cos ^{3} u}$
(c) If $x=\mathrm{r} \cos \theta$ and $y=\mathrm{r} \sin \theta$ by finding J and J^{\prime} separately, show that $\mathrm{JJ}^{\prime}=1$.
Q. 3. (a) Discuss the convergence of the following series.
(i) $\sum \frac{2+3 \cos n}{n^{3}}$
(ii) $\quad \sum n e^{-\mathrm{n}^{2}}$
(iii) $\quad \sum \frac{(-1)^{\mathrm{n}-1}}{\mathrm{n} \sqrt{\mathrm{n}}}$
(b) Find the area outside the circle $r=2 a \cos \theta$ and inside the cardioid $r=a(1+\cos \theta)$.
(c) Find the surface area of the solid generated by revolving the cycloid $x=\mathrm{a}(\theta-\sin \theta), y=\mathrm{a}(1-\cos \theta)$ about its base.
Q.4. (a) (i) Evaluate $\lim _{x \rightarrow a} \frac{\log \left(e^{x}-e^{a}\right)}{\log (x-a)}$
(ii) Evaluate $\iint_{A} y d x d y$ where A is the region bounded by the parabolas

$$
y^{2}=4 x \text { and } x^{2}=4 y
$$

(b) Evaluate $\int_{0}^{3} \int_{1}^{\sqrt{4-y}}(x+y) \mathrm{d} x \mathrm{~d} y$ by changing the order of integration.
(c) Evaluate $\int_{0}^{1} \int_{0}^{1} \mathrm{~d} x \mathrm{~d} y$ by changing to polar co-ordinates.
Q. 5. (a) (i) For $\mathrm{f}(x)=x^{2}, x \in[1,5]$, find $\mathrm{U}(\mathrm{f}, \mathrm{P})$ and $\mathrm{L}(\mathrm{f}, \mathrm{P})$ for $\mathrm{P}=\{1,2,3,4,5\}$
(ii) Find the area common to the circles $\mathrm{r}=\mathrm{a}$ and $\mathrm{r}=2 \mathrm{a} \cos \theta$ using double integration.
(b) Find the volume bounded by the cylinder $x^{2}+z^{2}=1, y=0$ and $y+z=3$ using triple integration.
(c) Evaluate $\iiint \mathrm{z}\left(x^{2}+y^{2}\right) \mathrm{dv}$ over the volume of the cylinder $x^{2}+y^{2}=1$ intercepted by the planes $\mathrm{z}=2$ and $\mathrm{F}=3$.
Q. 6. (a) (i) If $\overline{\mathrm{F}}=\left(y^{2}-z^{2}+3 y z-2 x\right) \mathrm{i}+(3 x z+2 x y) \mathrm{j}+(3 x y-2 x z+2 z) \mathrm{k}$, then show that $\overline{\mathrm{F}}$ is a solfofidal.
(ii) Find the rirectional derivative of $\mathrm{e}^{2 \mathrm{x}-\mathrm{y}+\mathrm{z}}$ at the point $(1,1,-1)$ in a direction towafus the point $(-3,5,6)$
(b) Show that $\overline{\mathrm{F}}=y^{2} \mathrm{z}^{3} \mathrm{i}+2 x y z^{3} \mathrm{j}+3 x y^{2} \mathrm{z}^{2} \mathrm{k}$ is a conservative vector field and find the corresponding potential function.
(c) Verify that $\nabla \times(\nabla \times \overline{\mathrm{F}})=\nabla(\nabla \cdot \overline{\mathrm{F}})-\nabla^{2} \overline{\mathrm{~F}}$ of the vector field, $\overline{\mathrm{F}}=3 x z^{2}-y z j+(x+2 z) \mathrm{k}$
Q. 7. (a) (i) Check the convergence of the integral $\int_{1}^{\infty} \frac{\sin ^{2} x}{x^{2}} \mathrm{~d} x$
(ii) Verify Green's theorem for $\oint_{C}\left(3 x-8 y^{2}\right) d x+(4 y-6 x y) d y$, where C is the boundary of triangle with vertices $(0,0),(1,0)$ and $(0,1)$.
(b) Verify Stokes theorem for $\overline{\mathrm{F}}=(2 x-y) \mathrm{i}-y z^{2} \mathbf{j}-y^{2} \mathrm{zk}$, where S is the upper half of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.
(c) Find the extreme value of $x^{2}+y^{2}+z^{2}$ under the constraint $\mathrm{a} x+\mathrm{b} y+\mathrm{cz}=\mathrm{C}$

