Seat N	No.:	Enrolment No.				
	G	UJARAT TECHNOLOGICAL UNIVERSITY				
a		B. E SEMESTER –I • EXAMINATION – WINTER 2012				
-	ect code:					
•	Subject Name: Mathematics - I					
Time: 10.30 am – 01.30 pm Total Marks: 70						
Instructions: 1. Attempt any 5 questions.						
		e suitable assumptions wherever necessary.				
0 1	-	es to the right indicate full marks.	-			
Q.1	(a) 1	For what value of α	3			
		$f(x) = x^2 + x, x \le 1$				
		$= 2\alpha x, x > 1$				
	2	Continuous at every x ? Determine absolute extrema of	3			
	_	$f(x) = x^2 + x, x \in [-5, 5].$	U			
	(b)1	Write all possible functions whose derivative is $3x^2 + 5$.	1			
		Show that $g(x) = 9x^2 + 2x - 22$ has at least one zero in the interval	4			
		$\left(-2,-\frac{4}{3}\right)$.				
	(c)	Discuss Maclauarin's series for $f(x) = \sqrt{x}$ and $g(x) = x$.	3			
Q.2	(a)1	State Fundamental Theorem of Calculus and evaluate	2			
		$\frac{d}{dx}\int_{0}^{x^2}\cos tdt$				
		$\frac{1}{dx} \int_{0}^{0} \cos t dt$				
	2	State the rule which helpful to evaluate $\int_{t}^{x} \frac{1}{t} dt$ and then evaluate.	3			
	(b)1	Determine volume of a sphere of radius a by the solids of revolution.	3			
	2	The region bounded by the curve $y = \sqrt{6x - x^2}$, the x-axis and the line	3			
		$r = \infty$ revolved about the x-axis to generate a solid. Find the volume of				
		the solid.				
	(c)	Let $f(x) = 1$ if x is rational number.	3			
		the solid. Let $f(x) = 1$ if x is rational number f(x) = -if(x) is retained number Prove or disprove that it is reimann integrable.				
Q.3	(a)		4			
Q.J	1	Determine the convergence of $\int_{1}^{\infty} \frac{dx}{x^{p}}$.	-			
			3			
	2	Prove that $\int_{-\infty}^{\infty} \frac{5}{e^x + 3} dx$ is convergent.	5			
	(b)		3			
		Expand $f(x) = x^3 - 6x^2 + 14x + 1$ in Taylor's series about $x = 2$.	3 2			
	(c) 1	Evaluate $\frac{\lim_{x \to 0} \frac{x - \sin x}{x^3}}{x^3}$.	2			
			2			
	2	Evaluate $\lim_{x \to \infty} x \tan \frac{1}{x}$	-			
Q.4	(a)		4			
-	1	State the Integral Test and determine the convergence of $\sum_{n=1}^{\infty} \frac{2 \tan^{-1} n}{1+n^2}$.				
			-			
	2	Determine the convergence of $\sum_{n=1}^{\infty} \frac{1}{5^n - 1}$.	2			
	2	$\frac{1}{n=1}5^{"}-1$				

Download all NOTES and PAPERS at StudentSuvidha.com

	(b) 1	Investigate the convergence of $\sum_{n=1}^{\infty} \frac{2^n}{n!}$.	2
	2	Show that $n=1$ <i>n</i> :	3
		$f(x, y) = \begin{cases} (xy)/(x^2 + y^2), & (x, y) \neq (0,0) \\ 0 & (x, y) = (0,0) \end{cases}$	
	(c)	Is continuous everywhere except at origin. Solve the system $u = 2x + y$, $v = x - 2y$ for x and y in terms of u and	3
		v. Also find $\frac{\partial(x, y)}{\partial(u, v)}$	
Q.5	(a) 1	Find $\frac{dw}{dt}$ at $t = 0$ if $w = xy^2 + z^2$	3
	1		
	2	where $x = \cos t$, $y = \sin t$, $z = t$. Let $u = f(x, y)$ is a homogeneous function of degree n.	4
	-		-
		Then find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.	
	(b)	Find the directions in which $f(x, y) = (x^2/2) + (y^2/2)$	3
		(a) increases most rapidly at the point (1,1)	
		 (b) decreases most rapidly at (1,1) (c) what are directions of zero change in f at (1,1)? 	
	(c)	Define Saddle Point. Find the local extreme values of	4
		$f(x) = x^{2} - y^{2} - xy - x + y + 6$ if possible.	
Q. 6	(a)1	Sketch the triangle R in the xy plane bounded by the x axis, the line	3
		y = 2x, and the line $x = 1$.	
		Evaluate $\iint_{R} \frac{\sin x}{x} dA$.	
	2	Sketch the region of integration and evaluate by reversing the order of	3
		integration	
		$\int dy dx$	
	(b)	Sketch the region of integration and change in to polar integral and then	4
	(0)	evaluate.	-
		$\int dy dx$	
		$\int_{-a}^{a} \int_{-\sqrt{a^2-x^2}}^{a} dy dx$	
	(c)	Find the volume of tetrahedron whose vertices (a, b, a) (a, b) (a, b) (a, c)	4
Q.7	(a)	(0,0,0), $(1,0,0)$, $(0,1,0)$, $(0,0,1)$ by triple integral.	4
Q.1	(a) 1	Evaluate $\int (x^2 + y) ds$ where <i>C</i> is the straight line segment $x = 2t$,	-
	1	$y = 1 - t$, $z = 1$ for $0 \le t \le 1$.	
		$y = 1 - l$, $z = 1$ for $0 \le l \le 1$.	3
	2	Let $\overline{F} = 2x^2\hat{i} + xy\hat{j} + \hat{k}$ is the velocity field of a fluid in space. Find the	•
		flow along the curve $t\hat{i} + t\hat{j} + \hat{k}$, $0 \le t \le 1$.	
	(b)		4
		Verify Green's theorem for $\overline{F} = x^2 \hat{i} + xy \hat{j}$, <i>C</i> : The square bounded by $x = 0, x = 1, y = 0, y = 1$.	
	(c)	x = 0, x = 1, y = 0, y = 1.	3
		Find a parametrization of the cylinder $x^2 + (y-2)^2 = 4$, $0 \le z \le 4$	
Б			

Download all NOTES and PAPERS at StudentSuvidha.com