Enrolment No._____

Seat No.: _____

(EM-8) GUJARAT TECHNOLOGICAL UNIVERSITY B.E. all Sem-I Examination December 08/January 09 Maths-I (110008)

DATE: 22-12-2008, Monday	TIME: 12.00 to 3.00 p.m.	MAX. MARKS: 70
Instructions: 1. Attempt all questions. 2. Make suitable assump 3. Figures to the right ind	otions wherever necessary. dicate full marks.	
Q.1(a) (i) Let the function f be de	fined by	02
	$ x = (x + 1)^{-2}, x \neq 0$	\sim
$f(x) = \begin{cases} x \\ x \end{cases}$;+1; $x < -2$	
	3 ; $x = -2$	O'
Evaluate each of the fo	llowing limits if it exists.	
$\lim_{x \to -2} j$	$f(x)$, $\lim_{x \to 0} f(x)$, $\lim_{x \to 2/5} f(x)$.	
(ii) Explain various types of	of discontinuities with an example	e. 02
(b) (i) Uing L'Hospital rule, e	valuate $\lim_{x \to \infty} \frac{1}{x} (1 - x \cot x)$.	02
(ii) State Sandwich theorem	$x \rightarrow 0 x$	that
if $x \in \mathbb{R}$ with $ x < 1$	then $x^n \to 0$ as $n \to \infty$.	02
(c) (i) Using mean value theor	rem, show that $3 + \frac{1}{28} < \sqrt[3]{28} < 3 - \frac{3}{28}$	$+\frac{1}{27}$. 03
(ii) Prove that $\tan^{-1} \left[\frac{x(3)}{\sqrt{1-x}} \right]$	$\left = -\frac{4x^2}{2} \right ^2 = 3\left(x + \frac{x^3}{6} + \frac{3x^5}{40} + .\right)$). 03
Q.2(a) Attempt any two of the fo	llowing.	04
(i) For $f(x) = x + 2, x \in [0]$	[0,5], find $U(f,P)$ and $L(f,P)$ for $P =$	= { 0,1,2,3,4,5 }.
(ii) State Fundamental theo	orem of Integral calculus and give	eone
example on which it is		
(iii) Evaluate the improper	integral $\int_{0}^{1} \frac{1}{x^2} dx$.	
(b) Evaluate $\int_{3}^{7} \sqrt[4]{(x-3)(7-x)}$	dx using the concept of Gamma a	and Beta function. 04
(c) (i) Test the convergence an	nd divergence of the following set	ries (any two). 04
$[A]\sum_{n=1}^{\infty}\tan^{-1}\left(\frac{1}{n^2+n+1}\right)$	[B] $5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \dots$ [C]	$\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{5 + n^5} \; .$

1

Download all NOTES and PAPERS at StudentSuvidha.com

(ii) Evaluate $\iint_{x} (x^2 + y^2) dA$, where dA indicates small area in xy – plane. **02**

Q.3(a) Suppose that u = f(x, y, z) and $x = g_1(t)$, $y = g_2(t)$, $z = g_3(t)$. Then write the chain rule for derivative of *u* w.r.t. *t*. Express $\partial w/\partial r$ and $\partial w/\partial s$ in terms of r and s if $w = x + 2y + z^2$, $x = r/s, y = r^2 + \log(s), z = 2r.$ 05 **(b)** (i) Evaluate $\lim_{(x,y)\to(0,0)} \frac{x^2 y}{x^4 + y^2}$. 02 (ii) Find the absolute maximum and minimum values of $f(x, y) = 2 + 2x + 2y - x^2 - y^2$ on the triangular plate in the first quadrant bounded by the lines x = 0, y = 0, y = 9 - x. 03 (c) Find the length of the arc of the curve $x = a \cos\theta$ and $y = a \sin\theta$; a > 0. 04 OR Q.3(a) State Euler's theorem on homogeneous function. Using it show that 05 (i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$ (ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 2 \sin u \cos 3u$ if $u = \tan^{-1}(x^2 + 2y^2)$. Explain whether we can apply Euler's theorem for the function $u = f(x, y) = \frac{x^2 + y^2 + 1}{x + y}.$ (**b**) (i) If u = f(x, y) then what geometrically $\frac{\partial u}{\partial x}$ indicates? 01 (ii) If $x = \sqrt{vw}$, $y = \sqrt{wu}$, $z = \sqrt{uv}$ and $u = r \sin\theta\cos\phi$, $v = r \sin\theta\sin\phi$, $w = v\cos\theta$. Calculate $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$. (iii) The pressure θ at any point (x, y, z) in space is $P = 400 \times y z^2$. 02 Find the tomest pressure on the surface of the unit sphere $x^{2} + y^{2} + z^{2} = 1.$ (c) Find the volume generated by revolving the parabola $y^{2} = 4 a x$; a > 002 about the latus rectum. 04 **Q.4(a)** Evaluate $\iint (x + y) dy dx$; *R* is the region bounded by x = 0, x = 2, y = x, y = x + 2.05 (b) Find the volume of the solid that lies under the plane 3x + 2y + z = 12and above the rectangle $R = \{ (x, y) \mid 0 \le x \le 1, -2 \le y \le 3 \}$. 05 (c) For the vector field $\vec{A} = k \vec{i}$ and $\vec{A} = k \vec{r}$. Find $\nabla \bullet \vec{A}$ and $\nabla \times \vec{A}$. Draw the sketch in each case. 04

OR

Q.4 (a) Change the order of integration and evaluate $\int_{0}^{a/\sqrt{2}} \int_{x}^{\sqrt{a^2 - x^2}} y^2 dA.$ 05

2

Download all NOTES and PAPERS at StudentSuvidha.com

(c) Find the scalar potential function f for $\vec{A} = y^2 \vec{i} + 2xy \vec{j} - z^2 \vec{k}$. 04

Q.5(a) Evaluate
$$\oint_C -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$
, where $C = C_1 \cup C_2$ with
 $C_1 : x^2 + y^2 = 1$ and $C_2 : x = \pm 2, y = \pm 2$. **05**
(b) Evaluate $\iint_S 6xydS$, where S is the portion of the plane $x + y + z = 1$
that lies in front of the yz – plane. **05**

that lies in front of the yz – plane. (c) Trace the curve y = x + (1 / x).

OR

Q.5 (a) Find the surface area of a sphere of radius <i>a</i> .	
(b) Evaluate $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F}(x, y, z) = -y^2 \vec{i} + x \vec{j} + z^2 \vec{k}$ and <i>C</i> is the	
curve of intersection of the plane $y + z = 2$ and the cylinder $x^2 + y^2 = 1$.	05
(c) Trace the curve 9 $a y^2 = x (x - 3a)^2$, $a > 0$.	04
Mar	
NIC.	
Jed from SV	
10Milloau ent	
S	

04

Download all NOTES and PAPERS at StudentSuvidha.com