\qquad
\qquad (EM-8)
GUJARAT TECHNOLOGICAL UNIVERSITY
B.E. all Sem-I Examination December 08/January 09 Maths-I (110008)

TIME: 12.00 to 3.00 p.m.
MAX. MARKS: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q.1(a) (i) Let the function f be defined by

$$
f(x)=\left\{\begin{array}{cl}
|x| / x & ; x>-2, x \neq 0 \\
x+1 & ; x<-2 \\
3 & ; x=-2
\end{array}\right.
$$

Evaluate each of the following limits if it exists.

$$
\lim _{x \rightarrow-2} f(x), \lim _{x \rightarrow 0} f(x), \lim _{x \rightarrow 2 / 5} f(x)
$$

(ii) Explain various types of discontinuities with an example.
(b) (i) Uing L'Hospital rule, evaluate $\lim _{x \rightarrow 0} \frac{1}{x}(1-x \cot x)$.
(ii) State Sandwich theorem on sequences and using it show that, if $x \in \mathrm{R}$ with $|x|<1$ then $x^{\mathrm{n}} \rightarrow 0$ as $n \rightarrow \infty$.
(c) (i) Using mean valu, theorem, shoy that $3+\frac{1}{28}<\sqrt[3]{28}<3+\frac{1}{27}$. 03
(ii) Prove th $\tan ^{-1}\left[\frac{x\left(3-4 x^{2}\right)}{\sqrt{1-x^{2}\left(1-4 x^{2}\right)}}\right]=3\left(x+\frac{x^{3}}{6}+\frac{3 x^{5}}{40}+\ldots\right)$.
Q.2(a) Attempt any two of the following.
(i) For $f(x)=x+2, x \in[0,5]$, find $U(f, P)$ and $L(f, P)$ for $P=\{0,1,2,3,4,5\}$.
(ii) State Fundamental theorem of Integral calculus and give one example on which it is not applicable.
(iii) Evaluate the improper integral $\int_{0}^{\infty} \frac{1}{x^{2}} d x$.
(b) Evaluate $\int_{3}^{7} \sqrt[4]{(x-3)(7-x)} d x$ using the concept of Gamma and Beta function. $\mathbf{0 4}$
(c) (i) Test the convergence and divergence of the following series (any two).
[A] $\sum_{n=1}^{\infty} \tan ^{-1}\left(\frac{1}{n^{2}+n+1}\right)$
[B] $5-\frac{10}{3}+\frac{20}{9}-\frac{40}{27}+\ldots$
[C] $\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n}{5+n^{5}}$.
(ii) Evaluate $\int_{0}^{1} \int_{0}^{x}\left(x^{2}+y^{2}\right) d A$, where $d A$ indicates small area in $x y$ - plane.
Q.3(a) Suppose that $u=f(x, y, z)$ and $x=g_{1}(t), y=g_{2}(t), z=g_{3}(t)$.

Then write the chain rule for derivative of u w.r.t. t.
Express $\partial \mathrm{w} / \partial \mathrm{r}$ and $\partial \mathrm{w} / \partial \mathrm{s}$ in terms of r and s if $w=x+2 y+z^{2}$,
$x=r / s, y=r^{2}+\log (s), z=2 r$.
(b) (i) Evaluate $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$. 02
(ii) Find the absolute maximum and minimum values of $f(x, y)=2+2 x+2 y-x^{2}-y^{2}$ on the triangular plate in the first quadrant bounded by the lines $x=0, y=0, y=9-x$.
(c) Find the length of the arc of the curve $x=a \cos \theta$ and $y=a \sin \theta ; a>0$.

OR

Q.3(a) State Euler's theorem on homogeneous function. Using it show that
(i) $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\sin 2 u$ (ii) $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=2 \sin u \cos 3 u$
if $u=\tan ^{-1}\left(x^{2}+2 y^{2}\right)$.

Explain whether we can apply Euler's theoremfor the function

$$
u=f(x, y)=\frac{x^{2}+y^{2}+1}{x+y}
$$

(b) (i) If $u=f(x, y)$ then what geometrically $\partial u / \partial x$ indicates?
(ii) If $x=\sqrt{v w}, y=\sqrt{w u}, z=\sqrt{u v}$ and $u=r \sin \theta \cos \phi$, $v=r \sin \theta \sin \phi, w \cos \theta$. Calculate $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$.
(iii) The pressur, at any point (x, y, z) in space is $P=400 x y z^{2}$. Find the gnest pressure on the surface of the unit sphere $x^{2}+y^{2}+z^{2}=1$.
(c) Find thevolume generated by revolving the parabola $y^{2}=4 a x ; a>0$ about the latus rectum.
Q.4(a) Evaluate $\iint(x+y) d y d x ; R$ is the region bounded by $x=0, x=2$,

$$
\begin{equation*}
y=x, y=x+2 \tag{05}
\end{equation*}
$$

(b) Find the volume of the solid that lies under the plane $3 x+2 y+z=12$ and above the rectangle $R=\{(x, y) \mid 0 \leq x \leq 1,-2 \leq y \leq 3\}$.
(c) For the vector field $\vec{A}=k \vec{i}$ and $\vec{A}=k \vec{r}$.Find $\nabla \bullet \vec{A}$ and $\nabla \times \vec{A}$. Draw the sketch in each case.

OR

Q. 4 (a) Change the order of integration and evaluate $\int_{0}^{a / \sqrt{2}} \int_{x}^{\sqrt{a^{2}-x^{2}}} y^{2} d A$.
(b) Find the area common to $r=a$ and $r=2 a \cos \theta ; a>0$.
(c) Find the scalar potential function f for $\vec{A}=y^{2} \vec{i}+2 x y \vec{j}-z^{2} \vec{k}$.
Q.5(a) Evaluate $\oint_{C}-\frac{y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$, where $C=C_{1} \cup C_{2}$ with $C_{1}: x^{2}+y^{2}=1$ and $C_{2}: x= \pm 2, y= \pm 2$. 05
(b) Evaluate $\iint_{S} 6 x y d S$, where S is the portion of the plane $x+y+z=1$ that lies in front of the $y z$ - plane.
(c) Trace the curve $y=x+(1 / x)$. 04

OR

Q. 5 (a) Find the surface area of a sphere of radius a.
(b) Evaluate $\int_{C} \vec{F} \bullet d \vec{r}$, where $\vec{F}(x, y, z)=-y^{2} \vec{i}+x \vec{j}+z^{2} \vec{k}$ and C is the curve of intersection of the plane $y+z=2$ and the cylinder $x^{2}+y^{2}=1$.05
(c) Trace the curve $9 a y^{2}=x(x-3 a)^{2}, a>0$.

