	S	at No.: Enrolment No	
	C	GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- 1 st / 2 nd • EXAMINATION – WINTER 2013	
		bject Code: 110006 Date: 21-12-2013	
	T	abject Name: Elements of Mechanical Engineering me: 10:30 am – 01:00 pm Structions: 1. Attempt any five questions.	
		 Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a) (b) (c)	Explain with a neat sketch the babcock and Wilcox water tube boiler. Show path of the gases and water in it. Explain, with suitable diagram, working principle of disc clutch and band brake.	5 5 4
Q.2	(a) (b)	Discuss working of diesel four stroke cycle engine with help of schematic diagram. How much heat is to be added to convert 4 kg of water at 20° C in to steam at 8 bar and 200° C. Take C _p of superheated steam as 2.1 KJ/kg and specific heat of water as 4.187 KJ/kg K	5 5
	(c)	Define following terms (i) Absolute pressure and Atmospheric pressure (ii) Enthalpy and Energy	4
Q.3	(a) (b)	Explain with a neat sketch the working of a vapour compression refrigerator. In an engine working on Otto cycle, air has a pressure of 1 bar and temperature 30° C at the entry. Air is compressed with a compression ratio of 6. The heat is added at constant volume until the temperature rises to 1500° C. Determine (i) air standard efficiency (ii) pressure and temperature at the end of compression (iii) heat supplied.	5 5
	(c)	Take $C_v = 0.718$ kJ/Kg K, R = 0.287 kJ/Kg K. What are LPG and CNG?	4
Q.4	(a) (b)	Enlist various types of pulicated for power drives. Explain any two with neat sketch and their application. A single stage, single acting compressor has a bore of 170 mm and stroke of 260 mm. it runs at 130 rpm. The suction pressure is 1 has and delivery pressure is 9 bar. Find the indicated power if compression (i) follows the law pv ^{1.25} = contraint and (ii) is isothermal. Also find isothermal efficiency. Assume there is no clearance volume.	5 5
	(c)	Draw a neat sketch of cochran boiler with all labels.	4
Q.5	(a) (b)		5 5
	(c)	2 m ³ /kg is compressed to 1 Mpa isothermally. Calculate (i) work down (ii) change in I.E. (iii) Heat transferred	4
Q.6	(a)	Derive an equation for work done in case of single stage single acting reciprocating air compressor neglecting	5
	(b)	clearance. What do you understand by mechanical and thermal efficiency? A steam plant uses 3 tonne of coal/hr. The steam is fed to turbine the output of which is 4 MW. The calorific value of the coal is 30 MJ/Kg. calculate the thermal efficiency of the plant.	
	(c)	Define following mechanical Properties. (i) Hardness (ii) Toughness (iii) Ductility (iv) Elasticity.	4
Q.7	(a) (b) (c)	What is governor? What are the various types of governors? Explain watt governor with neat sketch.	5 5 4