Seat	No.:	Enrolment No.						
Suk Tin	GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER V • EXAMINATION – WINTER - 2012Subject code: 151601Date: 11-01-2013Subject Name: Computer Oriented Statistical MethodsTime: 02:30 pm to 05:00 pmTime: 02:30 pm to 05:00 pmTotal Marks: 70Instructions:Total Marks: 70							
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.						
Q.1	(a)	Define error, relative error and percentage error.	07					
		If the approximate solution of a problem is $x_0 = 35.25$ with relative error of						
		at the most 2 % .Find the range of values correct upto four decimal digits in						
		which the exact value of the solution lie.						
	(b)	Evaluate $\int_{2}^{3} \frac{\cos 2x}{1+\sin x} dx$ using Gaussian two point and three point formulae.	07					
Q.2	(a)	Explain Descarte's rule of signs.	07					
		Solve $x^3 - 8x^2 + 17x - 10 = 0$ using Graeffe's method by squaring the roots thrice.						
	(b)	State Budan's theorem and apply it to find the number of roots of the equation $x^5 + x^4 - 4x^3 - 3x^2 + 3x + 1$ in the interval [-2, -1], [0, 1] and [1, 2].	07					
		OR						
	(b)	Solve $x^3 - 5x^2 - 2x + 24 = 0$ using Bairstow method.	07					
Q.3	(a)	Derive the formula of False Position Method and using it solve	07					
		$x \log x - 1.2 = 0$ correct to four decimal places.						
	(b)	Show that the rate of convergence of Newton Raphson method is 2.	07					
		OR						
Q.3	(a)	Solve the non linear equations $x^2 - y^2 + 7 = 0$ and $x - xy + 9 = 0$ using Newton Raphson method. Take $x_0 = 3.5$ and $y_0 = 4.5$	07					
	(b)	Describe the method of successive approximation and using it solve	07					
		$2x - \log x = 7$ correct to four decimal places.						

Download all Notes and Papers from Studentsuvidha.com

Q.4 (a) Using Taylor's series method compute the approximate values of y at

x = 0.2, 0.4 and 0.6 for the differential equation $\frac{dy}{dx} = x - y^2$ with the initial condition y(0) = 0.Now apply Milne's Predictor Corrector method to find y at x = 0.8.

(b) Solve the following system of equations by Gauss–Jacobi method correct to 07 five decimal places

27x + 6y - z = 85, 6x + 5y + 2z = 72, x + y + 54z = 110

OR

Q.4 (a) Obtain Cubic splines for every subinterval of the data

2 3

x : 1

(b) Fit a curve of the form $y = ab^x$ to the following data by the method of least 07 squares

6 🔶

y: 87 97 113 129 202 195 193

Q.5 (a) Compute the correlation coefficient between X and Y

Х	2	4	5	6	8	11
Y	18	12	10	8	7	5

(b) Calculate 5-yearly moving averages of the number of students passing from a 07 college

Year	Number of students	Year	Number of students				
2003	332	2008	405				
2004	317	2009	410				
2005	357	2010	427				
2006	392	2011	405				
2007	402	2012	438				
OR							

- **Q.5** (a) Show that $1 + \Delta = E = e^{hD}$
 - (b) Derive the Recurrence relation for Chebyshev polynomials and using it 07 define $T_2(x)$, $T_3(x)$ and $T_4(x)$.

Download all Notes and Papers from Studentsuvidha.com

07

07

07