Roll No.

24378

B. Tech. 6th Semester (Civil Engg.) Examination – May, 2014

DESIGN OF CONCRETE STRUCTURES-II

Paper: CE-302-F

Time: Three Hours]

[M.M.: 100

Before answering the question, candidates should ensure that they have been supplied the correct and complete question paper. No complain in this regard, will be entertained after examination.

- Note: Attempt five questions in all. Question No. 1 is compulsory and solve one question from each Section. Use of I.S. Code 456-2000, 3370 Vol. I to Vol. IV are permitted. Draw neat diagrams and drawings with designs. All questions carry equal marks. Assume suitable data if missing and where so ever necessary.
 - 1. State whether the following statements are true or false:
 - (a) The symmetrically placed columns induce torsion

- (b) The torsional moment at the support of continuous beam will be maximum.
- (c) The drop if provided for flat slabs, will have a length in each direction not less than 1/3rd of the Panel length in that direction.
- (d) The walls of tank resting on ground are subjected to weight of water and pressure of soils.
- (e) Concrete mix weaker than M20 can be used in the construction of elevated water tank.
- (f) Water retaining structures are not designed as per IS 3370-2000.
- (g) Building frame does not consist of beam and column constructed monolithically.
- (h) Yield line theory is based on Shear forces and Bending Moment which lead to collapse of structure.

 8 x 2.5 = 20

SECTION - A

- 2. (a) How will you calculate the Shear force, Bending Moment and Torsional Moments at a point 'P' at an angle φ, from one support of curved beam?
 - (b) What are the basic assumptions made in the design of continuous beams. 12 + 8 = 20
- 3. A flat slab with drops is proposed for a warehouse building 20 m x 30 m size. Using column grid of 5m x 5m; design an interior panel of flat slab to support a live load of 7.5 kN/m². Adopt M20 grade

Design a suitable staircase for multistoreyed building having staircase hall 2.5~m~x~4.5~m. The height between floors is 3.5~m. Live load for design be taken as $3000~N/m^2$ and finishes $750~N/m^2$. Use M20 concrete and Fe250 grade steel.

SECTION - B

- 4. (a) What are the causes of failure of foundations?
 - (b) State assumptions in the design of foundations.
 - (c) Design a combined footing (trapezoidal) for two columns 450 mm x 450 mm and 600 mm x 600 mm carrying 800 kN and 1000 kN load respectively. The columns are located 4.0 m apart. The safe Bearing Capacity of the soil is 200 kN/m². Use M20 concrete and Fe 415 grade steel. The maximum Projection allowed is 500mm beyond face of each column. 3 + 3 + 14 = 20
- **5.** (a) Design a circular tank for a capacity of 500 kilolitres with flexible joints at base. Use M25 concrete and Fe415 grade steel.
 - (b) What do you understand by minimum cover of reinforcement. 16 + 4 = 20

SECTION - C

- **6.** (a) Define Pre-stressed concrete. How does it differ from other types of concretes?
 - (h) What are the characteristics of Prestressed

- (c) Give a comparison (in tabulated form) of Pretensioning and Post tensioning systems of P.S.C. 4 + 10 + 6 = 20
- 7. (a) What do you understand by substitute frame?
 - (b) Write short notes on Testing of Beam and column sections.
 - (c) Design sheeting and Yokes for a column 300 mm \times 300 mm for 3 m in height upto bottom of beam. 4 + 6 + 10 = 20

SECTION - D

8. An triangular slab ABC is simply supported along AB = 8 m; BC = 6 m and is free along edge CA. The horizontal and vertical reinforcements at the bottom of the slab provide ultimate moment capacities of 100 kN.m/m each. Assume θ = 60°.

Determine the yield line pattern and uniformly distributed collapse load.

- 9. (a) Find the ultimate load for square slab continuous on all four edges.
 - (b) Define Isotropically and Orthotropically reinforced slabs.

 16 + 4 = 20