Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

B.E.

Sixth Semester Examination, 2010
Principles of Software Engineering (CSE-302-E)

Note : Atternpt any five gquestions. All guestions carry equal marks,
Q. 1. (a) Explain Iterative enhancement model of software development life-cycle,

Ans, Iterative Enhancement Model : lierative enhancement model has the same phases as the
waterfall model, but with fewer restrictions. Generally the phases occur in the same order as in the
waterfall model, but there may he conducted in several cycles. A usable product is released at the end of
the each cycle, with cach reiease providing additional functionality. Increment process models are
cifective in the siwations where requirement are defined precisely and there is no confusion about the
functionality of the tinal product. (Although. functionality can be delivered in phases as per desired
priorities). After every cycle, a usable product is given to the customer, For example. in the university
automation software library automation module may be delivered in the first phase and examination
automation module in the second phase and as so on. Every new cycle will have an additional
tunctionality. Increment process models are popular particularly when we have to guickly deliver a
Limited funciionality system,

During the first requircments analysis phasc, customers and Jevelopers specify as many
reguireiments as possible and prepare a SRS docoment. Developers and customers then privritize these
requirements. Developers implement the specified requirements in one or more cycle of design,
implementation and tesl based on the defined priorties. The model is given in figure shown below,

! Implementstm & [Mepration & sysiem Chpetationg
Regpuirnents Dhestin L 2 i e - - it —
l ™ iy ki wetrl besting Lesging TIEARTIN]

Rehense |

Implomentation | Iteprabicn & Svsiein | CIneratim

Design winl lesting IEsting __-.L (install) [=
\ Relcase 11

linplementation & _[Integration & R - Operation
il fenting = Lesting, | tinstally

Desion ==

-

Relense 1
Fig. Iterative enhancemeni model

The aim of the waterfall and prototyping models is the delivery of a complete, operational and
pood quality product. In contrast, this model does deliver an operational quality product at each release,
but one that satisfies only a subset of the customer’s requirements. The complete product is divided into
releases, and the developer delivers the product release by release. A typical product will usually have
many releases as shown in figure. At each release, customer has an operational quality product that does
a portion of what is required. The customer is able to do some usetul work atter first release. With this
madel, first release may be available within few wecks or months, whereas the customer generally waits
months or years o receive a product using tf « waterfall and prototyping model.

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

Q. 1. (b) Discuss the parameters for the selection of a life cycle mode.

Ans. Parameters for the Selection of a Life-Cycle Model ;

The selection of a suitable model is based on the following characteristics/categones/parameters |

(i) Reguirements (ii) Development team

(iii) Users {iv) Project types and associated risk

{i) Characteristics of Reguirements : Requirement are very important for the selection of an
appropriate model. There are number of situations and problems during requirements capluring and
analysis. The details are given below in table :
Selection of a Model based on Characteristics of Requirements

. Iterative I Evolutionary | _ .

Requirements Water-fall Prototype cilacrimcnt] devclopmient Spiral |RAD
Are requirements easily Yes No No No Mo | Yes
understandable and
defined 7
Do we change require- No Yes No No Yes | Mo
ments quite often 7 - _

B .|

Can we detine Yes Nu Yes Yes \ No | Yes
requirements early in ?
the cycle ? i .
Requirements are | No Yes Yes Yes | Yes | No
indicating a complex |i |
system to be built | | i

(i) Status of Development Team : The stawus of development team in terms of availability,
effectiveness, knowledge. intelligence, team work ete.. is very impartant for the success of the project, If
we know above mentioned parameters and characteristics of the team, then we may choose an
appropriate life-cycle model for the projecl. Some of the details are giveh below :

Selection based on Status of Development Team

. Iterative | Evoluationary | .

Development Team | Water-fall | Prototype | enhancement| development Spiral RAD
Less experience on Mo Yes Mo Na Yes | Mo
similar projects . ; v | Ry
Less domain Yes No Yes Yes Yes | Mo
knowledge (new o the
technalogy)
Less experience on Yes No Mo Mo Yes | No
Lools to be used
Availability of training, N Mo Yes Yes No | Yes
if required

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

(i) Involvement of Users : Involvement of users increases the understandability of the project.
Hence user participation, if available, plays a very significant role in the selection of an appropriate life

cycle model.

Some issues are discussed below :
Selection Based on User's Participation

Iterative

Evolutionary

problem domain

Involvement of Users | Water-fall | Prototype enhancement | development Spiral |RAD
User invilvement in all Mo Yes Na No No | Yes
phases.

Limited user Yes No Yes Yes Yes | No
participation

User have no previous MNo Yes Yes Yes Yes | No
experience ofl

participation in similar

projecis

Users are experts of No Yes Yes

(iv) Type of Project and Associated Risk :
Very few models incorporate risk assessment. Project Lype is also imporiant for the selection of

maodel. Some issues are discussed helow
Selection Based on Type of Project with Associated Risk

. Iterative |Evolutionary
Project Type and Risk | Water-fall | Prototype nkanremenl | development Spiral IRAD
Project is the No No Yes Yes No | Yes
enhancement of the
existing system
Funding is stable for the Yes Yes No No No | Yes
project
High reliability No No Yes Yes Yes | No
requirements
Tight project schedule No Yes Yes - Yes Yes | Yes
Use of reusable No Yes No No Yes | Yes
components
Are resources (time, No Yes No No Yes | No
money, people etc.)
scarce 7

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

An appropriate model may be selected based on options given in four tables. Firstly, we have to
answer the questions presented for each caicgury by circling a Yes or No in each table. Rank the
importance of each category, or question within the category in terms of the project for which we want to
select a model, The total number of circled responses for each column in the tables decide an appropriate
model.

Q. 2. (a) How do you calculate function points using FPA 7 Explain with an example,

Ans. The five functional units are ranked according to their complexity i.e., low, average, or high
using a sel of prescriptive standards organizations that use Function Point (FP) methods develop criteria
far detcemining whether a particular entry is low, average or high.

After classifying each of the five function types, the Unadjusted Function Points (UFP) are
caleulated vsing predefined weights for each funclion type as given below.

Table 1 : Functional Units with Weighting Factors

lll Weighting Factors
Functional Units . |

! Low Averapge High
External Inputs (EI) 3 4 f
External Ouiput (EO) 4 5 7
External Inquiries (EQ) 3 4 o [+
Internal Legical Files (ILF) _ 7 10 o 15
External Interface Files (EIF) 5 ; 7 10

Table 2 : UFP Calculation Table

. \ Count Complexity
Functional Units Complexity Totals | Functional Unit Totals
External Inputs L] s = .0 I
(Els) O Average » 4 O
[Highx6 | O

External [] L = D
Qutputs O Average=35 O
(EOs) O] Highx? = L1 O
External E] Low:x3 = D
Inquiries O Ave rage x4 = [
(EQs) O nishws = O O

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

Internal O rowx2 = 0O
Logical M Average x 10 O
Files (ILFs) O Highx 15 = O O
External Interface E:' Low 5 =_] -
Files (EIFs) O avergex7 = O
O Highx 10 = 0 | s
Total Unadjusted Function Point Count L D

The procedure for the calculation of UFP in mathematical form is given below :
5 3
v =33, W,
i=lj=t -
Where (indicates the row and j indicates the column of table 1.
W;; : 1tis the entry of the ith row and jth coiumn of table |.

Z, :1tis the count of the number of functional units of type i that have been classified as having the

complexily corresponding the column /.
FP = UFP * CAF. ;
Where CAF is complexity adjustment factor and is equal to [(.65 + 0.01A ZF;]. The F, (i =1t 14)
are the degrees of influence and are based on response to guestions.

Example :

Consider a project with following functional units
Number of user inputs =50

Number of user outputs =40

Number of user enquiries =135

Number of user files =106

Number of external interfaces = (4
Assume all complexity adjustment factors, weighting factors are average compute the function
points for the project.

UFP =50x 34+ 40=x5+35x4+6=x10+4x= 7
=200 + 200 + 140 + 60 + 28 =628

CAF ={065 + 001 ZF,)
={065+001(14=3))
=065 +042 =107

FP = UFF x CAF
=628 = LT =672

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

Q. 2. (b) Explain one model for estimating the cost of a software.

Ans. The Constructive Cost Model (COCOMO) : This model gained rapid popularity following
the publication of B.W, Boehm's excellent buok Software Engineering Economics 1 1981, COCOMO
is a hierarchy of software cost estimation models, which include basic, intermediate and detailed sub
models.

The model aims &t estimating, in a quick and rough fashion, mosi of the small 1o medinm sized
sofiware projects. Three modes of software development are considered in this mode @ organic,
semi-detached and embedded. In the organic mode. a small team of experienced developers develops
suftware in a very familiar environment. The size ot the sofiware development in this mode ranges from
smal! (a few KLOC) to medium (a few tens of KLOG), while in other two modes the size ranges from
small to very large {(a few hundreds of KLOC).

In the cmbeddzd mode of software development, the project has 1ight constraints, which might be
related o the target processor and its interface with the associated hardware. The problem to be solved is
unigue and 50 it is often hard to find experienced pevsons. 28 the same does not usually exist.

The semi-detached mode iz an intermediate mode hetwe :n the organic mode and embedded mode.
The comparisen of all there modes is given in table below

The Comparison of Three COCOMO Modes

" ; ; Development
[
Mode Project-Size Nature of Project Envire ¢
Organic | Typicaliy 2—50 KLOC Small size project, experienced | Familiar & In house

developers in the familiar
EVITONIMent.

Semi-detached | Typically 50300 KLOC | Medium size project, Medium | Medium
size leam, Average previous
gxperience on simiiar projects.

. -

Embedded Typically over 30 KLOC | Large project, real time | Complex Hardware/
systems, complex interfaces, | customer Interfaces
] very little previous experience. | required,

The basic COCOMO equations take the form
E =a, (KLOC)"
D =c, (B}

Where £ is effort applied in person-months, and D s the development time in months, The
coefficients ay,, by, ¢, and o, are given in table below :

Project ay ' b, | d,
| Organic 2.4 1.05 2.5 0.38
.Semi-detached : 3.0 1.12 2.5 0.35
Embedded 3.6 1.20 | 2.5 .32

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

When effon and development time are known, the average staff size to complete the project may
be calculated as ¢

Average staff size (55) :—E persons

When project size is known, the productivity level may be calculated as :
Productivity (P) = KL——-EC KLOC/PM.

With the basic model, the sofiware estimator has a useful tool for estimating guickly, by two runs
on a packet caleulator, the cost and development time of 4 software project, once the size is estimated.

Q. 3. (a) What are the key concepts in designing a software 7

Ans. Object oriented design is not dependent on any specific implementation language. Problems
are modelled using objects. Objects have :

(1) Behaviour (they do things).

(ii) Stare (which changes when they do things).

The various terms related to object oriented design are objécts, classes, absiraction, inheritance
and polymorphism. L

(i) Objects : The word “‘object’ is used very frequently and conveys different meaning in
different circumstances. Here, meaning is an entity able to save a stale and which offers a number of
operations to either examing or affect this state. All objects have unique identification and are
distinguishable,

(if) Messages : Con(?:t:ptually. ohjects communicale by message passing. Message consist of
identity of the target object, the name of the requested operation and any other operation needed 1o
perform the function, Messages are ofien implemented as procedure or function calls (name = procedure
name, infurmation = parameter list),

(iii) Abstraction : In object oriented design, complexity is managed using abstraction.
Ahstraction is the elimination of the irrelevant and amplification of the essentials.

(iv) Class : In any system, there shall be number of objects. Some of the objects may have common
characteristics and we can group the objects according to these characteristics. This type of grouping is
konown as a class. Hence, a class is a set of objects that share a commeon structure and a common
behaviour, Classes are useful because they act as a blue print for objects.

(v) Attributes : An attribute is a data value held by the objects in a class. The square class has two
attributes : a colour and arrays of points, Each attribute has a value for each object, instance.

(vi) Opeérations : An operation is a function or transformation that may be applied to or by objects
in a class. The behaviour of the operation depends on the class of its target.

{vii} Inheritance : The low level classes (known as subclasses or derived classes) inherit state and
behaviour from this high level class (known as a super class or base class).

(viii) Polymorphism : When we abstract just the interface of an operation and leave the
implementation to subclasses it is called a polymorphic operation and process is called polymorphism.

(ix) Encapsulation (Information Hiding) : Encapsulation is also commonly referred 1o as
**Information Hiding."" It consists of the separation of the external aspects of an object from the internal
implementation details of the object. The external aspects of an object are accessible by other objects.

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

through methods of object, while the internal implementation of those methods are hidden from the
external object sending the message.

Encapsulation deals with permitting or restricting a client. Class abiiity (o modify the attributes or
invoke the methods of the class or object of concern. Thus, encapsulation protects (a) an objects’s
internal, state from being corrupted by its clients and (b) client code from changes in the object’s
implementation,

(x) Hierarchy : Hierarchy involves organizing something according to some particular order or
rank (c.g., complexity, responsibility etc.). Tt is another mechanism for reducing the complexity of
software by being able Lo treat and express sub-types in a generic ways, This hicrarchy is implemented in
software via @ mechanism called “*Inheritance.”

Q. 3. (b) Draw level-1 DFD for Railway Reservation system.

Ans.
Passenger log in details

Traveling det
discount information
Birth / Tickel Information
Booking infermation

Ticket cancellation request

Transaction account Info.

Log in details
Cancel/change Info. Booking conformation

Passenger’s personal information

Terms & condition

Confirmed ticket details |

Schedule ! Train information

Seal's available by date User authentication details

Booted class/Birth schedule | Fare / Discount allocation
Allocation |
PMR information ‘
Interactive response ‘ Administrator
Provider
Transaction
VY Detail
s Authentication confirmation
Financial e
glatclw.va: Updated account details

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

Q. 4. (a) What are different risk management activities ?

Ans. Risk management is the identification, assessment and prioritization of risks followed by
coordinated and cconomical application of resources to minimize, monitor, and control the probability
andfor impact of unfortunate events or to maximize the realization of opportunities.

Principles of Risk Management :

Risk mansgement should

{i) create value

{ii) be an integral pant of organizational process

{1ii) be pant ol decision making

{iv) be systematic and structured.

Process ;

“Risk Management Principles and guidelines on implementation,” the process of risk
management consists of several steps as follows :

Establishing the Context : Establishing the context involves :

(1) Identification of risk in a sclected domain of inteiest.

(ii) Planning the remainder of the process.

(iii}) Mapping out the following :

(1) The social scope of risk management.
{11y The identily and objective of stakeholders,

Identification : Afier establishing the context, the next step in the process of managing risk is 1o
idenufy potential risks.

The chosen method of identifying risks may depend on culture, industry practice and compliance.
Commaon risk identification methods. are |

(i) Objectives-based Risk Identification : Organizations and project teams have objectives.

{il} Scenario-based Risk ldentification : In this Jifferent scenarios are created. The scenarios
may be the alternative ways to achicve an objective, .

(iii} Common-risk Checking : In several industries, lest with known risks are available.

Assessment @ Once risk have been identified, they must then be assessed as to their potential
severity of loss and to the probability of occurrence. The fundamental difficulty in risk assessment is
determining the rate of occurrence since statistical information is not available on all kinds of past
incidents.

Potential Risk Treatments : Once risks have been identified and assessed, all technigues 10
manage the risk fall into one or more of these four major categories ;

(i) Avoidance : This include not performing an activity that could carry risk.

(i) Reduction : Risk reductioh or “optimisation”” involves reducing the severity of the loss or the
liketihood of the loss from occuring.

tiii) Sharing : It defined as sharing with another panty the burden of loss or the hencfit of gain,
from a risk, and the measure o reduce 4 risk.

(iv} Retention : Involves accepting the loss or henefit of gain, from a risk when it oceurs.

Create a Risk Management Plan : Select appropriate controls or counter-measures (o measure

each risk. The risk management plan should propose applicable and effective security controls for
managing the risk.

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

Implementation : Implementation follows all of the planned methods for mitigating the effect of
the risks. Purchase insurance policies for the risks that have been decided (o be transferred to an insurer,
avoid all risks that can be avoided without sacrilicing the entity”s goals, reduce others and retain the rest.

Q. 4. (b) What is software quality 7 Discuss the software quality attributes.

Ans. Software Quality : Different people understand different meanings of quality like

(1) Conformance (o requirements

{i1) Fitness for the purpose

(i) Level of satisfaction

If a product is meeting its requirement, we may say il is good quality product. Quality has many
characteristics and soms are related to cach other.

In software, the quality is commonly recognised as *lack of bugs™ in the program. If a software
has oo many functional defects, then, it is not mecting its basic requirement of functionality. This is
wsually expressed ia two ways |

(i) Defect Rate : Number of defects per million lines of source code, per function point or any
other unil.

(i) Reliability : Generally measured as number of failures per *t* hours of operation, mean time to
failure or probability of fallure free operation in a specilied time under specified environment,

When we deal with sofiware guality, a list of attributes is required to be defined that are
appropriate for software.

The details of software quality atiribuies are given below :

(i} Reliabillty : The extent 1o which a software performs its intended functions withouwt failure,

{ii} Correctness ; The extent to which a software meets its specifications,

{iii) Consistency and Precision : The extent to which a software is consistent and given resull
with precision.

(iv) Robustness : The extent to which a software (olerates the unexpected problems.

{¥) Simplicity : The extent to which a software is simple in its operations,

(vi) Traceability : The extent to which an error is traceable in order to fix it

{vii) Usability : The extent of effort required 1o learn, operate and understand the functions of the.
software.

(viii) Accuracy : Meeting specification with precision.

(ix) Clarity and Accuracy of Documentation : The extent to which documents are clearly and
gecurately written,

{x} Conformity of Operation Environment : The extent to which a software is in conformity of
operational enviconment,

{xi) Completencss : The extent to which a software has specified functions.

(xii) Efficiency : The amount of computing resources and code required by software to perform a
function.

(xiii) Testability : The effort required to test a software (o ensure that it performs its intended
functions,

{xiv) Maintainability : The ¢ffort required to locate and fix an error during maintenance phase.
{xv) Deadability : The extent to which a software is readable in order to understand.

/

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

(xvi) Adaptability : The extent to which a software as adaptable to new platforms and technology.

(xvii) Expandability : The exten! o which a software is expandable without undesirable side
etfects.

{xviii} Portability : The effort required to transter a program from one platform 1o another
platform.

(}. 5. (a) Define the following terms :

Error, Bug, Fault, Defect, Failure, Test case, Test suite.

Ans. (i) Error : The word error entails different meaning. The concrete meaning of the Latin word
error is “‘wondering™" or **stroving’’. This may be syntax error or misunderstanding of specification.

(i) Bug : When developer make mistakes duringe coding, we call these mistakes as bugs, Most
bugs arise from mistakes and errors made by people in either a program’s source code or its design,

(iii) Fawlt : An error may lead to one or more Ganits. 1L is more precise to say that a fault is the
representation of an error. Where representation is the mode of expression, such as narrative text, dfd,
FR diagram ete,

(iv) Defect : The iack of something necessary or desirable for completion or perfection, An
imperfection that causes madeguacy or failure.

(v} Failure : A failore occor when a faull excoutes. It s the departure of the output program from
the expected outpul, Hence faihore is dynamic, A fault may lead w0 many failures.

ivi) Test Cases @ Test cases describes an input Jescription and an expected owput description.

(vii} Test Suite : The set of test cases is called a test <uite. We may have a test suite of all possible
Lest cases.

Q. 5. (b) Explain life cycle of a Bug.

Ans. Bug Life Cycle : In software development process, the bug has a life-cycle. The bug should
po through the life-cycle to be closed. A specific life-cyele ensures that the process is standardized. The
hug attains different states in the life cycle. The life cvele of the bug can be shown diagrammatically as
follows .

i New

I Kejected
b

—_—

Assign

y
1'1*_'_"1_:] i Defermed]

?r
Venfied I

| ol i

(i) New : When the bug s posted Tor the first time, its state will be ““New'".

{ii) Open : After a tester has posted a bug, the lead of the tester approves that the bug 1= genuine
and he changes the state as “"OPEN"",

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

(iii} Assign : Once the lead changes the state as “"Open’’, he assigns the bug to correspon ling
developer or developer team,

{iv) Test : Once the developer fixes the bug, he has to assign the bug to the testing team for next
round of testing. It specifies that the bug has been fixed and is released to testing team,

(v) Deferred : The bug, changed to deferred state means the bug is expected to be fixed in next
releases. Some of them are priority of the bug may he low, lack of time for the release,

{vi) Rejected : If the developer feels that the bug is not genuine, he rejects the bug. Then the state
of the bug is changed to ""Rejected™’.

(vii) Duplicate : If the bug is reaped twice or the two bugs mention the same concept of the bug,
then one bug status is changed to "'Duplicate™.)

(vili) Verified : If the bug is not present in the sofiware, he approves that the bug is fixed and
changes the status to “verified."’

(ix} Reopened : If the bug still exists even after the bug is fixed by the developer, the tester
changes the stapes w “'Reopened.”

{x) Closed : If the tester feels that the bug no longer exists in the software, he changes the status of
the bug to “'closed’”.

Q. 5. (c) What is Software Testing ? What are various testing principles ?

Ans. Software Testing : It is an investigation conducted to provide stakeholders with information
ahout the quality of the product or service under test.

Suftware testing can also be stated as the process of validating and verifying that a software
procduct

(i) mects the business and technical requirements that guided its design and development.

(i) works as expected; and

(iii) can be implemented with the same characteristics,

Principles of Software Testing :

Software Testing :

(i) Test is a Formal Activity : It involves a Strategy and a systematic approach. Tests are always
specified and recorded.

(ii) Test is a Planned Activity : The workflow and the expected results are specificd. Therefore
the duration of the activities can be estimated. The point in time where (ests are executed is defined,

(iii) Test is the formal proof of softwere quality.

Overview of Test Methods :

(i) Static = The software is not executed but analyzed offline. In this category could be code
inspections, lint checks ete.

(ii) Dynamic : This requires the execution of the software or parts of the software, It can be
executed in the targel system. :

(iif) Structural : There are so called “*while-box tests™ because they are performed with the
knowledge of the source code details,

(iv) Functional : There are the so called “*black box™ tests. The software is regarded a5 a unit with
anknown content.

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

Test by Progressive Stages :

{i) Module : A module is the smallest unit of source code. Itis too small to allow functional tests,
However it is ideal candidate for white-box tests. '

(ii) Compenent : This is the black box test of modules or groups of modules which represent
certain functionality. Components can be step by step integrated to bigeer components and tested ag
such.

(iii) Integration : The integration depends on the kind of system. The integration is still dope in
the labaratory.

{ivy Systemn : This is a black-box test of the complete software in the target system. The
environmental conditions have (0 be realistic complete original hardware in the destination,

0. 6. {a) What are different levels of Testing 7

Ans. Levels of Testing : Our emphasis during testing is to examine and modify the source code,
There are three levels of westing ie., individual module o the entire software system.

{i) Unit Testing : Unit testing is the process of taking a module and running it in isolation fromn the
rest of the software product by using prepared test cases and comiparing the actual results with the results
predicted by the specification and design of the module. One purpose of testing 15 (o find (and remove) as
many criors in the soltware as praciical. There are number of reasuns in support of unit testing than
lesting the enlire procuct.

() The size of o single module is small enough thal we can Tocate an error fairly casily,

{313 The module is small enaugh that we can allempl o lest i in some demonstrably exhaustive
fashion.

(i) Confusing interactions of muliipic errors in widely ditTecent parts of the software are
clirminated.

(i} Integration Testing : The purpose of unit testing s 0 determine that each independent
module e correctly implemented. This eives littde chance to determine that the interface between
midules is also correct, and for this reason, integration testing must be performed. One specific target of
mtegration westing is the interfuce, Whether parameters match on both sides as o type, permissible
ranges. meaning and utilization, With integration twsting, we move hhlwl}' away Trom structural testing
and toward {unctional testing, which treats a moedule as an impenetrable mechanism for performing a
function. As the aggregated modules hecome larger and larger, we lose our ability to think about path
coverape and domains. and must be satisfied with simply determining that the product seems o dowha
wie intended.

Each time i new module is added as part ol integratton testing. the software changes. New data
Mow paths arc established. new input/output may occur, and new contral logic is invoked.

(iii) System Testing = Of the three levels of testing, the system level is closel 1o evervday
experience.

As we know, sofltware is one component of o lurge computer based system, Ultimately. software is
incorporated with other system components (c.e.. new hardware, information). and thus a serics ul
special tests are w0 be conducted. Many times, software product are designed 1o run on a vaney of
hardware configurations. The software should actually be tested on many different hardware m:'l-ups.
although the full range of memory, processor, operating system and peripheral possibilities may be 10

large for complete wsting. There are many types of specifications and we should be aware of those as we
perform systemn testing.

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

During system testing, we should evaluate a number of attributes of the software nat ore vital o
the user. These attributes represent to the operativnal correctness of the product and ima:+ be part of the
software specification.

Q. 6. (b} Dresign various test cases to find out the roots of a quadratic equation using various
methods of functional testing.

Ans. (i) Boundary Value Analysis : Boundary condition means, an input value may be on the
boundary, just below the boundary or just above the boundary,

Consider o program with two inputs variable x and y. There input variables have specificd
houndaries ;

us x<h
csysd

Hence both the input x and v are bounded by two intervals [a, bland |, d [respectively. For input &,
we may design lest cases with values a and & just above a and also just below b. Similarly for input y, we
may have values ¢ and 4, just above ¢ and also just below 4.

- g Td o=y
v : ______J
Rl

L

-
a—*b

l

Input domain for program having two input variables

(ii} Equivalence €lass Testing : In this method. input dornain of a program is partitioned into o
finite number of eguivalence classes such that one can reasonahly assume, but not be absuluely sure,
that the test of a representative value of each class is equivalent (o a test of any other value. Two steps arc
required in implementing this method

(i) The equivalence closses are identified by taking each input condition and partitioning it into
valid and invalid classes,

(it) Generate the test cases using the equivalence classes identified in the previous step. Thas is
performed by writing test cases covering all the valid equivalence classes. Then a test case is written for
cach invalid equivalence class so that no lest contains more than one invalid class, This is to ensure that
ner twir invalid classes mask each other,

Imvalid inpsut ' I__-T“T“——[

Yaud = Clutpuits
it r_r__[._. ._..j
Trpant doeniarie Cutput domam

Equivalence partitioning
Q. 7. (a) What is software reliability 7 Explain any one reliability model in detail.
Ans. Software Reliability : Software rehability means operational reliability. Itis also defined as

the ability of 4 system or component 1o perform its required functions under stated conditions for o
speci fied period of time.

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

ISDf:wara reliability is also defined as the probabilily that 2 software sveiem foifills b assigred
task in a given envircnment for a predefined number of input cases, assuneing that the hardware and the
inputs are free of error. Hence it is the probahility that the software wili work without failure for a
specified perind of time in a given environment. Here environment and tizae is fixed. Reliability i3 for
fixed time under given environment or stated conditions, So. ~ebability valoe is abwoys for awell dettped
domain. Software reliability is the prohability of a farlur= frec aperatico of a progran, for 2 specified inw
in a specified cnvironment. For example. a tme-sharing system may have a relizhi 'ty ¢f 0.95 for 10 hr
whor employed by the average user. This system, wien exceuted vor 10, wouid cperate wotova fadme
for 95 of there penods oui of 100, As a tesiliof the genera! way in which we defired o lum=, note that th.
coneept of software reliability incerporates the notion of performance being satisfactory,

For example, axcessive raspanss time at a given load level may be considered unsahsfaciory 5o
thar a rortine must be recorded in more efficient form

Logarithmic Poisson Execution Time Model :

This model is deve'oped by Musa et al. The failure inter.sity function is different here as compared
to basic model In this case, failure intensity function decreases exponentially whereas it {s consrant for
hasic model

The farhore intensity function is given as ;

Ap=2qexpi-80,)
where 8 is callad the Failuse intensiry decay paramerer. The relationship betweer failure intensity (L) spd
rican fatlures expenenced () is shawn in fig. (a)

———— .-.

Failure imepsity, -
4)

Ho,

T

"‘-.._-___-__-_

"f

— Mean failues experiented |) —————

Relationship between p and i

The ‘0" represents the relative change of failure intensity per failure experienced. The slope of
failure intensity function is :

f‘@:-)._u 8 exp(=pf)
dp

dh
du

=-8h

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

The relationship between execution time and mean failures experienced is given in fig. (b).
' 3

Logarithmic poisson model
E:
b
z
A
=
g - = _
< Basic model
|
E
= -

— Exegcplion tinie {1} ————

The expecied number of failures for this model is always infinite at infinite time. The relation for

number of failures is given by

'_u.f_z}'—-élnt?'.uﬂ: +1)

The expression for failure intensily is given as:
D =d, /Ry Dz+1}
The relations for the additional number of farlures and additional execution urme in this miodel are

A
ﬁurl inl =1
G }"F ‘,I'
& % =1;;_-L1|
f L!.F A o
where, Ap = Present failure intensity

4 p = Failure intensity objeciive
Hence, at larger values of execution time, the logarithmic puisson model will have larger values of

{ailure intensity than the basic model.

Q. 7. (b) Explain the various methods for software reviews.
Ans. Software Reviews : This 1s a popular requirements validation techmigue where a group of

people will read the SRS document and lock for possible problems :

(i) Plan Review : The review team is selected and time and place for review mecting is fized.
(i) Distribute SRS Document : The SRS document is di 'ributed 1o all the members,
(iii) Read SRS Document : Each member should read the document carefully to find contlict,

emissions, inconsistencies, deviations from standards and other problems.

(iv) Organise Review Meeting : Each member presents histher views and identified problems.

The problems are discussed and a set of actions to address the problem is approved

(v) Follow-up Actions : The chairperson of the leam checks that the approved action have heen

“Farried out.

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

{vi) Revise SRS Document ;: The SRS document is revised to reflect the approved actions. Al this
stage, it may be accepted or may be reviewed.

). 8. Write short notes on the following :

(a) CMM

{b) CASE Tools

ic) Data Dictionary

{d} Coupling and Cohesion

Ans. (a) CMM (Capability Maturity Model) : The Capability Maturity Model (CMM) is nota
software life cycle model. Instead, it is a stralegy fur improving the sofiware process, irrespective of the
actual life cycle model used. The CMM was developed by Software Engincering Institute (SEI) of
Camegie-Mellon University, in 1986, CMM is used to judge the maturity of the software processes of an

organization and to identify the key practices that are required to increase the maturity of these
processes. The CMM is organized into five maturity levels as shown below :

Optimizing - 5
Manasged
Defined
Repeatable P

¥
S

L4

Initiai

v

Maturity Levels of CMM

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

(t) Initial {Maturity Level 1) ; At this. the lowest level, there are essentially no scund software
engincering aanagement practices in place in the organization. Instead, everything is done on an aJhoc
hasis. 3

(i} Repeatshle (Maturity Level 2) © At this lavel, policies for menasine 2 <oftw ais preject and
procesures 1o imelement those policics are estabiished. An objective in achievicg level 2 & w
institutioeslive afiective management processes lor software projects, which allow orgamzation to
reneat successful piactices devaloped on garlier provects, alinoueh the specific procssses aplemented
by 1he o yeets may differ.

i) Defined (Matarity Level 3) @ At thie level e stundard proccss tor developing and
v tminh g saltwire across the organization iy documentsd, ociuding both sottware cnginecring and
mankgeirunl processes, The soliware process cypaniuty of level 3 organizations can be summenzad as

stondac T and | cunsdeem” becanse both sollwdre 2nginsening and manageme activites aig stable
aru repeatabie.

(ivi Mansgeed Maatority Leved 4) £ Af tos 5w, the organieation sets auantitativ . guality goais
oy Bath soipws=e procects and processes, The sotowars process eanability at level -+ orgarizacions can he
soprnareod as U prediciahl L o et The necerss o s st red and operaies within measurebie limiis,

{vi Optimizing (Maturity Y.evel 51 : At this level, the entre organization is focused on
continuous precess Jmprovernent. Fhe organizatiovs nave the raeans o ideatify weaknesses and
drengthen the process nocactively with the goal of preventing the occurrence of defects. The software
rrocess capability of ievel 5 organizalions can be charzzterized s *'continuously improving™' because
level 5 srganizations are continuously striving to improve the range of their process capability, there by
improving the process performance of their projects.

(bY CASE Tools : CASE stands for Computer Aided Software Engineering; it van be used to mean
any computer-besed toul for softwire pianning, deJelopmert and evolution,

(i) System Flowchart and ER-diagram Generation Tool :

What the Tool Doees : Smartdraw iz a perfect suite [or drawing all kinds of diagrams and charts ;
Flowcharts, organizational chans, ER diagram cte. Tool tips automatically label buttons on the tool bar.

(ii) Data Flow Diagram Tool : The too! hzlps the user draw a standard data Now diagram for
system analysis,

(ifi) Tool to Convert Decision Table to Structured English : This table consists of a heading and
. four rows.

{ivi System Requirements Specification Documentation Toeol : ARM or Automated
Requirement Measurement tool aids in writing the system reguirements specifications right.

{¥) A Tool for Screen Design and Data Inputting : This tool is used to create the graphical user
interface to describe the appearance and location of interface elements, you simply add prebuilt objects
inio place on screen.

(¢) Data Dictionary : Data dictionary is simply reposiiories (o store information about all data
items defined in DFDS. At the requirements stage, the data diciionary should at least define customer
data items, to ensure that the customer and developer use the same definitions and terminclogies.
Typical information stored includes :

(1) Mame of the data item

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

{ii) Aliases (other name for item)

{iii} Description/purpose

(iv) Related data tems

fv; Range of values

{vi) Data stractuee definition/{ionn

The name of the ata item 15 self-explanatory. Alases ioclude other names by which this data item
1 calied e.g., DEO for Data Entry Operator and DR for Deputy Registrar. Description/Purpose is a
texwal description o what the data item is used for or why it exists. Related data items capture
relationships betwem data items .2, total-marks must always equal to internal-marks plus
external-marks.

Range of vals records all possible values, e.g., total marks must be positive and between 0 to
100. Data Mows cagture the names of the processes that generate or receive the data item. If data item is
primiti- ¢, then dat structure definition/form captures the physical structure of the data item. If the data
is itself a data spgegate, then data structure definition/form captures the comgposition of the data items in
terrrs of othes dat items, The mathematical operators used within the data dictionary are defined in table
given below :

Notation i Meaning
x=a+b x consists of data elements g & b,
x=[alb] x consists of either data elements a or b.
':z a_ | xconsists of an optional data element a.
x = ylal x consists of ¥ or more occurrence of data element a.
x=lalz | xconsistsof z o fewer occurrences of data element a.
r=ylalz x consists of some occurrences of datu element a which are between y and :,

The da dictionary can be used to :

(i) Crde an ordered listing of all data items.

(ii) Cate as ordered listing of a subset of data items,
(iii) Fid a cita item name from a description.

(iv) Csign tie software and test cases.

(d) Guplingand Coheslon :

Couying : Cupling or dependency is the degree to which each program module relies on each
une of therther mdules.

Typs of Couling :
(i) (ontent Cupling : It is when one module modifies or relies on the intemnal working.
(ii) >ommon 'oupling : Common coupling is when two modules share the same global data.

(i xternal bupling : It occurs when two modules share an externally imposed data format or
device inzrface.

Downloaded from http://studentsuvidha.in and http://studentsuvidha.in/forum

{iv) Control Coupling : It is one inodule controlling the flow of another, by passing it information
on what to do.

{v) Data Coupling : It is when modules share data throvgh, for example, parameters.

Cohesion : Cohesion is a measure of how strongly-related the functiorality expressed by the
source code o a software module is

Types of Cohesion :

(i) Coincidental Cohesion : It is when parts of a module are grouped artitrarily.

(i) Logical Cohesion : It is when parts of a module are grouped becase they logically are
categorized to do the same thing, even if they are different by nature.

(iii) Procedural Cohesion : It is when parts of a module are grouped because hey always follow a
cenain sequence of execution.

(iv) Communication Coheslon : It is when parts of a module are grouped becase they operate on
the same data.

{v) Function Cohesion : It is when parts of a module are grouped because theyall contribute 1o 2
single well-defined task of the module.

